User Tools


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
math-340:m340-f15-hw:hw-21 [2015/10/27 07:04] – created dcsmath-340:m340-f15-hw:hw-21 [2015/11/03 18:14] (current) dcs
Line 11: Line 11:
   - Suppose $X$ has moment generating function $M_X(t) = \frac{1}{(1 - 2t)^3}$ for $t < \frac{1}{2}$. Find the mean and variance of $X$.   - Suppose $X$ has moment generating function $M_X(t) = \frac{1}{(1 - 2t)^3}$ for $t < \frac{1}{2}$. Find the mean and variance of $X$.
   - Suppose $X \sim \text{Expo}(\lambda)$. Use the moment generating function of $X$ to show that the $k$th moment of $X$ is $\mu_k = \frac{k!}{\lambda^k}$.   - Suppose $X \sim \text{Expo}(\lambda)$. Use the moment generating function of $X$ to show that the $k$th moment of $X$ is $\mu_k = \frac{k!}{\lambda^k}$.
 +
 +**For Problem Set due 2 November**: 18
 +
 +Answers:
 +
 +  - $M_X(t) = \frac{1}{b - a}\int_a^b e^{tx}dx =  \frac{e^{tb} - e^{ta}}{t(b - a)}$
 +  - $M_X(t) = \sum_{k=0}^\infty e^{tk}q^kp = p\sum_{k=0}^\infty (qe^t)^k = \frac{p}{1 - qe^t}$ provided $qe^t < 1$.
 +  - $M_X'(t) = \frac{6}{(1 - 2t)^4}$ and $M_X''(t) = \frac{48}{(1 - 2t)^5}$, so $E[X] = M_X'(0) = 6$, $E[X^2] = M_X''(0) = 48$, and $\text{Var}(X) = 48 - 36 = 12$
 +  - $M_X(t) = \frac{\lambda}{\lambda - t} = \frac{1}{1 - \frac{t}{\lambda}} = \sum_{k=0}^\infty \frac{t^k}{\lambda^k}$. Hence $\frac{\mu_k}{k!} = \frac{1}{\lambda^k}$.