Mathematics 340: Lecture 26 Covariance

Dan Sloughter

Furman University

November 9, 2015

Dan Sloughter (Furman University)

Mathematics 340: Lecture 26

lovember 0 2015 1

Covariance

• Suppose X and Y are random variables with means μ_X and μ_Y , respectively, and $E(|XY|) < \infty$. We call

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

the *covariance* of X and Y.

- Note:
 - Cov(X, X) = Var(X).

Dan Sloughter (Furman University)

If X and Y are independent, then

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y)) = E(X - \mu_X)E(Y - \mu_Y) = 0.$$

- If Cov(X, Y) = 0, we say X and Y are uncorrelated.
- Note: independent random variables are uncorrelated, but uncorrelated random variable are not necessarily independent.

Calculation

• For any random variables X and Y with means μ_X and μ_Y , respectively,

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

$$= E(XY - X\mu_Y - Y\mu_X + \mu_X\mu_Y)$$

$$= E(XY) - \mu_Y E(X) - \mu_X E(Y) + \mu_X\mu_Y$$

$$= E(XY) - \mu_X\mu_Y - \mu_X\mu_Y + \mu_X\mu_Y$$

$$= E(XY) - \mu_X\mu_Y.$$

Example

- Suppose X and Y have the joint density $f(x,y) = \begin{cases} 10x^2y, & \text{if } 0 < y < x < 1, \\ 0, & \text{otherwise.} \end{cases}$
- Then

$$E(X) = \int_0^1 \int_0^x 10x^3 y dy dx = \frac{5}{6},$$

$$E(Y) = \int_0^1 \int_0^x 10x^2 y^2 dy dx = \frac{5}{9},$$

$$E(XY) = \int_0^1 \int_0^x 10x^3 y^2 dy dx = \frac{10}{21}.$$

Hence

$$Cov(X, Y) = \frac{10}{21} - \left(\frac{5}{6}\right)\left(\frac{5}{9}\right) = \frac{5}{378} = 0.01323.$$

• Note: since $Cov(X, Y) \neq 0$, this is another way to see that X and Y are not independent.

Dan Sloughter (Furman University) Mathematics 340: Lecture 26 November 9, 2015 3 / 9 Dan Sloughter (Furman University) Mathematics 340: Lecture 26 November 9, 2015 4 / 9

Variance and covariance

- Suppose X and Y are random variables with mean μ_X and μ_Y , respectively.
- Then, since $E(X + Y) = \mu_X + \mu_Y$,

$$\begin{aligned} \mathsf{Var}(X+Y) &= \mathsf{E}(((X+Y) - (\mu_X + \mu_Y))^2) \\ &= \mathsf{E}(((X-\mu_X) + (Y-\mu_Y))^2) \\ &= \mathsf{E}((X-\mu_X)^1 + 2\,\mathsf{E}((X-\mu_X)(Y-\mu_Y)) + \mathsf{E}((Y-\mu_Y)^2) \\ &= \mathsf{Var}(X) + \mathsf{Var}(Y) + 2\,\mathsf{Cov}(X,Y). \end{aligned}$$

- More generally, for random variables X_1, X_2, \ldots, X_n ,
 - $\operatorname{Var}(X_1 + X_2 + \dots + X_n) = \sum_{k=1}^n \operatorname{Var}(X_k) + 2 \sum_{1 \le i < n} \operatorname{Cov}(X_i, X_j).$

Example

- Suppose X and Y have the joint density $f(x,y) = \begin{cases} 10x^2y, & \text{if } 0 < y < x < 1, \\ 0, & \text{otherwise.} \end{cases}$
- Then

$$E(X^2) = \int_0^1 \int_0^x 10x^4y dy dx = \frac{5}{7},$$

and

$$E(Y^2) = \int_0^1 \int_0^x 10x^2y^3 dy dx = \frac{5}{14}.$$

• Then, from the previous example,

$$Var(X) = \frac{5}{7} - \frac{25}{36} = \frac{5}{252}$$
 and $Var(Y) = \frac{5}{14} - \frac{25}{81} = \frac{55}{1134}$.

Hence

$$Var(X+Y) = \frac{5}{252} + \frac{55}{1134} + 2 \cdot \frac{5}{378} = \frac{215}{2268} = 0.09480.$$

Cauchy-Schwarz inequality

- Suppose X and Y are random variables.
- For any real number t,

$$0 \le \mathsf{E}((X-tY)^2) = \mathsf{E}(X^2) - 2tE(XY) + t^2E(Y^2).$$

- Note: the right-hand side of the above is a quadratic polynomial, in the variable t, which can have at most one root
- Hence, using the quadratic formula, it must be the case that

$$4(E(XY))^2 - 4E(X^2)E(Y^2) < 0.$$

• That is $(E(XY))^2 \le E(X^2) E(Y^2)$, or $|E(XY)| \le \sqrt{E(X^2) E(Y^2)}$.

Correlation coefficient

- Suppose X and Y are random variable with means μ_X and μ_Y and variances σ_X^2 and σ_Y^2 , respectively.
- Applying the previous result to the random variables $X \mu_X$ and $Y \mu_Y$, we have

$$|\operatorname{Cov}(X,Y)| \leq \sigma_X \sigma_Y.$$

It follows that

$$-1 \le \frac{\mathsf{Cov}(X,Y)}{\sigma_X \sigma_Y} \le 1.$$

We all

$$Corr(X, Y) = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

the correlation coefficient of X and Y.

- Notation: Corr(X, Y) is frequently denoted ρ .
- Note: Corr(X, Y) = 1 or Corr(X, Y) = -1 if and only if Y = aX + b for some constants a and b.

Example

• Suppose X and Y have the joint density $f(x,y) = \begin{cases} 10x^2y, & \text{if } 0 < y < x < 1, \\ 0, & \text{otherwise.} \end{cases}$

Then

$$Corr(X, Y) = \frac{\frac{5}{378}}{\sqrt{\frac{5}{252}}\sqrt{\frac{55}{1134}}} = 0.4264.$$

Dan Sloughter (Furman University

Mathematics 340: Lecture 26

November 9 2015

9, 2015