Testing for independence

- Suppose X is a discrete random variable with r possible outcomes and Y is a discrete random variable with c possible outcomes.
- For i = 1, 2, ..., r and j = 1, 2, ..., c, let

$$p_{ij}=P(X=i,Y=j),$$

$$p_{i.} = p_{i1} + p_{i2} + \cdots + p_{ic} = P(X = i),$$

and

$$p_{.j} = p_{1j} + p_{2j} + \cdots + p_{rj} = P(Y = j)$$

• We want to test the hypothesis that X and Y are independent.

• That is, we wish to test

 $H_0: p_{ij} = p_{i.}p_{.j} \text{ for all } i \text{ and } j$ $H_1: p_{ij} \neq p_{i.}p_{.j} \text{ for some } i \text{ and } j.$

Mathematics 341: Lecture 25 Contingency Tables

Dan Sloughter

Furman University

1 April 2019

Testing for independence (cont'd)

- To test the hypotheses, suppose we have a random sample of size *n* from the bivariate distribution of (*X*, *Y*).
- For i = 1, 2, ..., r and j = 1, 2, ..., c, let
 - k_{ij} = number of observations (X, Y) for which X = i and Y = j,

$$k_{i.} = k_{i1} + k_{i2} + \dots + k_{ic}$$

= number of observations (X, Y) for which X = i,

and

$$k_{j} = k_{1j} + k_{2j} + \dots + k_{rj}$$

= number of observations (X, Y) for which Y = j.

Testing for independence (cont'd)

• We call the table of the values k_{ij} a contingency table:

	1	2		с	Total
1	k_{11}	k ₁₂	•••	<i>k</i> _{1<i>c</i>}	k _{1.}
2	k_{21}	k ₁₂ k ₂₂		k _{2c}	k _{2.}
÷	÷	÷	·	÷	:
r	k _{r1}	k _{r2}		k _{rc}	k _{r.}
Total	k.1	k.2	•••	k.c	п

1 April 2019

1/14

1 April 2019 2 / 14

Testing for independence (cont'd)

• Now the maximum likelihood estimators are

$$\hat{p}_{i.}=\frac{k_{i.}}{n},$$

for i = 1, 2, ..., r, and

$$\hat{p}_{.j}=\frac{k_{.j}}{n},$$

for $j = 1, 2, \ldots, c$.

• Hence, under H_0 , the expected frequencies are

$$e_{ij} = n \cdot \frac{k_{i.}}{n} \cdot \frac{k_{.j}}{n} = \frac{k_{i.}k_{.j}}{n}$$

 $i = 1, 2, \dots r$ and $j = 1, 2, \dots, c$.

Testing for independence (cont'd)

• We may evaluate either

$$-2\log(\lambda) = 2\sum_{i=1}^{r}\sum_{j=1}^{c}k_{ij}\log\left(\frac{k_{ij}}{e_{ij}}\right)$$

or

$$d=\sum_{i=1}\sum_{j=1}\frac{(\kappa_{ij}-e_{ij})}{e_{ij}}.$$

 $r c (k_{\rm e} c_{\rm e})^2$

- Under H_0 , both $-2\log(\Lambda)$ and D have, for large n, approximately chi-squared distributions
- Degrees of freedom:
 - Dimension of the entire parameter space: rc 1.
 - Number of estimated parameters: (r-1) + (c-1) = r + c 2.
 - Hence the distributions of $-2\log(\Lambda)$ and D have

$$(rc-1) - (r+c-2) = rc - r - c + 1 = (r-1)(c-1)$$

degrees of freedom

Dan Sloughter (Furman University)

Example

- We will consider again the Canadian study of the link between smoking and mortality in a group of Canadian war veterans.
- Recall: The veterans, initially at ages between 60 and 64, were followed for six years.
- Previously, we treated the study as two samples, a sample of 1067 nonsmokers and a sample of 402 smokers.
- Now consider the data as one sample of n = 1469 veterans.
- At the end of the six years, each subject was categorized in two ways:
 - As either a nonsmoker or a pipe smoker.
 - As either alive or dead.

Example (cont'd)

• The resulting data are summarized in a table:

	Dead	Alive	Total
Nonsmoker	117	950	1067
Pipe Smokers	54	348	402
Total	171	1298	1469

• We want to test the hypothesis H_0 that the two attributes (smoking habits in one case, living status in the other) are independent of one another.

1 April 2019 7 / 14

1 April 2019

5/14

1 April 2019 6 / 14

Example (cont'd)

- The expected frequencies are:
 - Nonsmoker and dead:
 - Nonsmoker and alive:

•	Smoker	and	dead:
---	--------	-----	-------

• Smoker and alive:

$$\frac{402 \times 171}{1469} = 46.8.$$
$$\frac{402 \times 1298}{1469} = 355.2.$$

 $\frac{1067\times 171}{1469} = 124.2.$

 $\frac{1067 \times 1298}{1162} = 942.8.$

Example (cont'd)

• So we have the following table of expected frequencies:

Dan Sloughter (Furman University) Mathematics 341: Lecture 25

	Dead	Alive	Total
Nonsmoker	124.2	942.8	1067
Pipe Smokers	46.8	355.2	402
Total	171	1298	1469

• We now compute either

$$-2\log(\lambda) = 2\sum_{i=1}^{2}\sum_{j=1}^{2}k_{ij}\log\left(rac{k_{ij}}{e_{ij}}
ight) = 1.6824$$

or

$$d = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(k_{ij} - e_{ij})^2}{e_{ij}} = 1.7261$$

• If X has a chi-squared distribution with 1 degree of freedom, then we compute the *p*-values as either $P(X \ge 1.682) = 0.1946$ or $P(X \ge 1.726) = 0.1889$.

Example (cont'd)

- Note:
 - We analyzed this data previously with a two-sample binomial test, getting a test statistic of z = 1.3107 with a one-sided *p*-value of 0.0950.
 - In fact, $z^2 = 1.718$, which would be an observation from a chi-squared distribution with 1 degree of freedom.

Mathematics 341: Lect

Example

• The following contingency table is from a study to see if there is an association between the birth weights of infants and the smoking habits of their parents:

Smoking/weight	Both	Mother	Father	Neither	Total
Above average	9	6	12	23	50
Below average	21	10	6	13	50
Total	30	16	18	36	100

• The expected frequencies are:

$$\frac{30 \times 50}{100} = 15 \qquad \frac{16 \times 50}{100} = 8 \qquad \frac{18 \times 50}{100} = 9 \qquad \frac{36 \times 50}{100} = 18$$
$$\frac{30 \times 50}{100} = 15 \qquad \frac{16 \times 50}{100} = 8 \qquad \frac{18 \times 50}{100} = 9 \qquad \frac{36 \times 50}{100} = 18$$

Dan Sloughter (Furman University)

1 April 2019

1 April 2019

9/14

11/14

1 April 2019

10/14

Example (cont'd)

• So the table of expected frequencies is:

Smoking/weight	Both	Mother	Father	Neither	Total
Above average	15	8	9	18	50
Below average	15	8	9	18	50
Total	30	16	18	36	100

- It then follows that $-2\log(\lambda) = 10.8011$ or d = 10.5778.
- If X has a chi-squared distribution with 3 degrees of freedom, then the *p*-values are $P(X \ge 10.8011) = 0.0129$ and $P(X \ge 10.5778) = 0.01424$.
- Conclusion: This study provides strong evidence that birth weight and parental smoking habits are not independent.

Example (cont'd)

- Suppose the contingency table is in a file birth-weights.txt with columns labeled Both, Mother, Father, and Neither and rows labeled Above and Below.
- Then these R commands will perform the analysis above:
 - bw <- read.table("birth-weights.txt", header=T)
 - chisq.test(bw)

Dan Sloughter (Furman University)

• Note: chisq.test(bw)\$expected will show the expected frequencies.

1 April 2019 13 / 14

241 1 . 05

1 April 2019 14 / 14