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Testing for independence
• Suppose X is a discrete random variable with r possible outcomes and Y is a discrete

random variable with c possible outcomes.
• For i = 1, 2, . . . , r and j = 1, 2, . . . , c, let

pij = P(X = i ,Y = j),

pi . = pi1 + pi2 + · · ·+ pic = P(X = i),
and

p.j = p1j + p2j + · · ·+ prj = P(Y = j).
• We want to test the hypothesis that X and Y are independent.
• That is, we wish to test

H0 : pij = pi .p.j for all i and j
H1 : pij 6= pi .p.j for some i and j .
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Testing for independence (cont’d)
• To test the hypotheses, suppose we have a random sample of size n from the bivariate

distribution of (X ,Y ).
• For i = 1, 2, . . . , r and j = 1, 2, . . . , c, let

kij = number of observations (X ,Y ) for which X = i and Y = j ,

ki . = ki1 + ki2 + · · ·+ kic

= number of observations (X ,Y ) for which X = i ,

and

k.j = k1j + k2j + · · ·+ krj

= number of observations (X ,Y ) for which Y = j .
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Testing for independence (cont’d)

• We call the table of the values kij a contingency table:
1 2 · · · c Total

1 k11 k12 · · · k1c k1.

2 k21 k22 · · · k2c k2.
...

...
... . . . ...

...
r kr1 kr2 · · · krc kr .

Total k.1 k.2 · · · k.c n
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Testing for independence (cont’d)

• Now the maximum likelihood estimators are

p̂i . = ki .
n ,

for i = 1, 2, . . . , r , and
p̂.j = k.j

n ,

for j = 1, 2, . . . , c.
• Hence, under H0, the expected frequencies are

eij = n · ki .
n ·

k.j
n = ki .k.j

n ,

i = 1, 2, . . . r and j = 1, 2, . . . , c.
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Testing for independence (cont’d)
• We may evaluate either

−2 log(λ) = 2
r∑

i=1

c∑
j=1

kij log
(

kij
eij

)
or

d =
r∑

i=1

c∑
j=1

(kij − eij)2

eij
.

• Under H0, both −2 log(Λ) and D have, for large n, approximately chi-squared distributions
• Degrees of freedom:

• Dimension of the entire parameter space: rc − 1.
• Number of estimated parameters: (r − 1) + (c − 1) = r + c − 2.
• Hence the distributions of −2 log(Λ) and D have

(rc − 1)− (r + c − 2) = rc − r − c + 1 = (r − 1)(c − 1)

degrees of freedom
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Example

• We will consider again the Canadian study of the link between smoking and mortality in a
group of Canadian war veterans.
• Recall: The veterans, initially at ages between 60 and 64, were followed for six years.
• Previously, we treated the study as two samples, a sample of 1067 nonsmokers and a

sample of 402 smokers.
• Now consider the data as one sample of n = 1469 veterans.
• At the end of the six years, each subject was categorized in two ways:

• As either a nonsmoker or a pipe smoker.
• As either alive or dead.
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Example (cont’d)

• The resulting data are summarized in a table:
Dead Alive Total

Nonsmoker 117 950 1067
Pipe Smokers 54 348 402
Total 171 1298 1469

• We want to test the hypothesis H0 that the two attributes (smoking habits in one case,
living status in the other) are independent of one another.
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Example (cont’d)

• The expected frequencies are:
• Nonsmoker and dead:

1067× 171
1469 = 124.2.

• Nonsmoker and alive:
1067× 1298

1469 = 942.8.

• Smoker and dead:
402× 171

1469 = 46.8.

• Smoker and alive:
402× 1298

1469 = 355.2.
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Example (cont’d)
• So we have the following table of expected frequencies:

Dead Alive Total
Nonsmoker 124.2 942.8 1067
Pipe Smokers 46.8 355.2 402
Total 171 1298 1469

• We now compute either

−2 log(λ) = 2
2∑

i=1

2∑
j=1

kij log
( kij

ei j

)
= 1.6824

or

d =
2∑

i=1

2∑
j=1

(kij − eij)2

eij
= 1.7261.

• If X has a chi-squared distribution with 1 degree of freedom, then we compute the
p-values as either P(X ≥ 1.682) = 0.1946 or P(X ≥ 1.726) = 0.1889.
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Example (cont’d)

• Note:
• We analyzed this data previously with a two-sample binomial test, getting a test statistic of

z = 1.3107 with a one-sided p-value of 0.0950.
• In fact, z2 = 1.718, which would be an observation from a chi-squared distribution with 1

degree of freedom.
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Example

• The following contingency table is from a study to see if there is an association between
the birth weights of infants and the smoking habits of their parents:

Smoking/weight Both Mother Father Neither Total
Above average 9 6 12 23 50
Below average 21 10 6 13 50
Total 30 16 18 36 100

• The expected frequencies are:

30× 50
100 = 15 16× 50

100 = 8 18× 50
100 = 9 36× 50

100 = 18
30× 50

100 = 15 16× 50
100 = 8 18× 50

100 = 9 36× 50
100 = 18
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Example (cont’d)

• So the table of expected frequencies is:
Smoking/weight Both Mother Father Neither Total
Above average 15 8 9 18 50
Below average 15 8 9 18 50
Total 30 16 18 36 100

• It then follows that −2 log(λ) = 10.8011 or d = 10.5778.
• If X has a chi-squared distribution with 3 degrees of freedom, then the p-values are

P(X ≥ 10.8011) = 0.0129 and P(X ≥ 10.5778) = 0.01424.
• Conclusion: This study provides strong evidence that birth weight and parental smoking

habits are not independent.

Dan Sloughter (Furman University) Mathematics 341: Lecture 25 1 April 2019 13 / 14

Example (cont’d)

• Suppose the contingency table is in a file birth-weights.txt with columns labeled
Both, Mother, Father, and Neither and rows labeled Above and Below.
• Then these R commands will perform the analysis above:

• bw <- read.table("birth-weights.txt", header=T)
• chisq.test(bw)

• Note: chisq.test(bw)$expected will show the expected frequencies.
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