Mathematics 350: Lecture 18

Antiderivatives

Dan Sloughter

Furman University

March 2, 2018

Dan Sloughter (Furman University)

Mathematics 350: Lecture 18

March 2 2018

Dan Sloughtor (Eurman University

Theorem

Nathematics 350: Lecture 1

 $\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$

whenever $C_1, C_2 \subset D$ have the same initial point z_1 and the same final point z_2 .

March 2, 2018 2 /

Proof

- Suppose f has an antiderivative F on D and let C be a smooth arc with parametrization z(t), $a \le t \le b$.
- Let $z_1 = z(a)$ and $z_2 = z(b)$.
- Then

$$\int_{C} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt = F(z(t))\Big|_{a}^{b} = F(z_{2}) - F(z_{1}),$$

and so would be the same for any smooth arc from z_1 to z_2 .

• If C is a contour consisting of smooth arcs C_k , with initial point z_{k-1} and final point z_k , k = 1, 2, ..., n, then

$$\int_C f(z)dz = \sum_{k=1}^n \int_{C_k} f(z)dz = \sum_{k=1}^n (F(z_k) - F(z_{k-1})) = F(z_n) - F(z_0),$$

a value which, again, depends only on the the initial and final points of C.

Proof (cont'd)

- Now suppose the value of $\int_C f(z)dz$ depends only on the initial and final points of C.
- Let $z_0 \in D$ and define

$$F(z) = \int_C f(s) ds$$

for any contour C in D with intial point z_0 and final point z.

• Suppose $D \subset \mathbb{C}$ is a domain and $f: D \to \mathbb{C}$ is continuous on D.

• Then f has an antiderivative F on D if and only if

 Since this value does not depend on the particular contour C, we will denote the integral by

$$\int_{z_0}^z f(s)ds.$$

• We need to show that F'(z) = f(z) for any $z \in D$.

Dan Sloughter (Furman University) Mathematics 350: Lecture 18 March 2, 2018 3 / 14 Dan Sloughter (Furman University) Mathematics 350: Lecture 18 March 2, 2018 4 / 14

Proof (cont'd)

- Choose a γ neighborhood of z lying in D and a Δz with $0 < |\Delta z| < \gamma$.
- Then

$$F(z + \Delta z) - F(z) = \int_{z_0}^{z + \Delta z} f(s) ds - \int_{z_0}^{z} f(s) ds$$
$$= \int_{z_0}^{z} f(s) ds + \int_{z}^{z + \Delta z} f(s) ds - \int_{z_0}^{z} f(s) ds$$
$$= \int_{z}^{z + \Delta z} f(s) ds.$$

Now

$$\int_{z}^{z+\Delta z} ds = s \Big|_{z}^{z+\Delta z} = \Delta z.$$

Dan Sloughter (Furman University

Mathematics 350: Lecture 18

M---- 2 2010

Proof (cont'd)

And so

$$f(z) = f(z) \frac{\int_{z}^{z+\Delta z} ds}{\Delta z} = \frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) ds.$$

Hence

$$\frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) = \frac{1}{\Delta z} \left(\int_{z}^{z + \Delta z} f(s) ds - \int_{z}^{z + \Delta z} f(z) ds \right)$$
$$= \frac{1}{\Delta z} \int_{z}^{z + \Delta z} (f(s) - f(z)) ds.$$

• Now given $\epsilon > 0$, choose an $\alpha > 0$ such that

$$|f(s)-f(z)|<\epsilon$$

whenver $|s - z| < \alpha$.

• Let δ be the smaller of γ and α .

Dan Sloughter (Furman University

Mathematics 350: Lecture 18

March 2 2018 6 /

Proof (cont'd)

• Then, whenever $|\Delta z| < \delta$, we have

$$\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|<\frac{1}{|\Delta z|}(\epsilon|\Delta z|)=\epsilon.$$

Hence

$$\lim_{\Delta z \to 0} \left(\frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right) = 0.$$

And so

$$F'(z) = \lim_{\Delta z \to 0} \frac{F(z + \Delta z) - F(z)}{\Delta z} = f(z).$$

Theorem

- Suppose $D \subset \mathbb{C}$ is a domain and $f:D \to \mathbb{C}$ is continuous on D.
- Then

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$$

whenever $C_1, C_2 \subset D$ have the same initial point z_1 and the same final point z_2 if and only if

$$\int_C f(z)dz=0$$

whenever $C \subset D$ is a closed contour.

Dan Sloughter (Furman University) Mathematics 350: Lecture 18 March 2, 2018 7 / 14 Dan Sloughter (Furman University) Mathematics 350: Lecture 18 March 2, 2018 8 / 10

Proof

- Suppose the value of $\int_C f(z)dz$ depends only on the initial and final points of C.
- Given a closed contour C, let z_1 and z_2 be distinct points on C.
- Write $C = C_1 C_2$, where C_1 and C_2 are the two parts of C having initial point z_1 and
- Then

$$\int_{C_1} f(z)dz = \int_{C_2} f(z)dz.$$

And so

$$\int_C f(z)dz = \int_{C_1} f(z)dz - \int_{C_2} f(z)dz = 0.$$

Proof (cont'd)

- Now suppose $\int_C f(z)dz = 0$ for any closed contour $C \in D$.
- Let C_1 and C_2 be two contours in D, both having initial point z_1 and final point z_2 .
- Then $C = C_1 C_2$ is a closed contour, and so

$$0=\int_C f(z)dz=\int_{C_1} f(z)dz-\int_{C_2} f(z)dz.$$

• Thus $\int_{C_1} f(z)dz = \int_{C_2} f(z)dz$.

Example

• For any contour C with initial point 0 and final point 1+i,

$$\int_C z dz = \int_0^{1+i} z dz = \frac{1}{2} z^2 \Big|_0^{1+i} = \frac{1}{2} (1+i)^2 = i.$$

Example

Note:

$$F(z)=-\frac{1}{z}$$

is an antiderivative of

$$f(z)=\frac{1}{z^2}$$

on the domain $D = \{z \in \mathbb{C} : z \neq 0\}.$

Hence

$$\int_C \frac{1}{z^2} dz = 0$$

for any closed contour C in D.

Example

- Let C_1 be the right half of the circle |z| = 4, extending from -4i to 4i.
- Ther

$$\int_{C_1} \frac{1}{z} dz = \text{Log}(z) \Big|_{-4i}^{4i} = \left(\ln(4) + i \frac{\pi}{2} \right) - \left(\ln(4) - i \frac{\pi}{2} \right) = \pi i.$$

- Now let C_2 be the lefthand side of the same circle, starting at 4i and ending at -4i.
- Note: We cannot use Log(z) to evaluate $\int_{C_2} \frac{1}{z} dz$.
- However, we may use another branch of log(z), for example,

$$\log(z) = \ln(r) + i\theta, 0 < \theta < 2\pi.$$

Using this branch, we have

$$\int_{C_2} \frac{1}{z} dz = \log(z) \Big|_{4i}^{-4i} = \left(\ln(4) + i \frac{3\pi}{2} \right) - \left(\ln(4) + i \frac{\pi}{2} \right) = \pi i.$$

Example (cont'd)

• Note: $C = C_1 + C_2$ is the circle |z| = 4, and we have

$$\int_C \frac{1}{z} dz = \int_{C_1} \frac{1}{z} dz + \int_{C_2} \frac{1}{z} dz = \pi i + \pi i = 2\pi i.$$

Dan Sloughter (Furman University)

Mathematics 350: Lecture 18

March 2 2018

Dan Sloughter (Furman Univer

athematics 350: Lecture 18

M----- 2 2010