Definitions

If S is a subset of a metric space E and, for some set A, {U_α : α ∈ A} is a collection of open subsets of E, we say {U_α : α ∈ A} is an open cover of S if

 $S\subset igcup_{lpha\in A}U_lpha.$

- If {U_α : α ∈ A} is an open cover of a set S in a metric space E, we call a subset of {U_α : α ∈ A} which is also an open cover of S a subcover of S.
- We say a subset *S* of a metric space *E* is *compact* if every open cover *S* has a finite subcover of *S*.

Examples:

- Any finite subset of a metric space is compact.
- If S = (0, 1) in \mathbb{R} , then $\{(\frac{1}{n}, 1) : n = 2, 3, 4, ...\}$ is an open cover of S which does not have a finite subcover of S.

Proposition

• Proposition: If E is compact and S is a closed subset of E, then S is compact.

Mathematics 450: Lecture 10

Compact Spaces

Dan Sloughter

Furman University

September 19, 2016

- Proof:
 - Suppose $\{U_{\alpha} : \alpha \in A\}$ is an open cover of *S*.
 - Since S^c is an open set, $\{U_{\alpha} : \alpha \in A\} \cup \{S^c\}$ is an open cover of E.
 - Since E is compact, there exists a finite subset B of A for which {U_α : α ∈ B} ∪ {S^c} is a finite subcover of E.
 - Hence $\{U_{\alpha} : \alpha \in B\}$ is a finite subcover of S.
 - Thus S is compact.

Proposition

- Proposition: A compact set is bounded.
- Proof:
 - Suppose S is a compact subset of a metric space E.
 - For $p \in S$, let U_p be the open ball of radius 1.
 - The $\{U_p : p \in S\}$ is an open cover of S.
 - Since S is compact, there exists a finite set of points p_1, p_2, \ldots, p_n such that $\{U_{p_i} : i = 1, 2, \ldots, n\}$ is a finite subcover of S.
 - Let r be the maximum of $d(p_1, p_i)$, $i = 2, 3, \ldots, n$.
 - Then S is a subset of the closed ball with center p_1 and radius r + 1.
 - Hence *S* is bounded.

er 19, 2016

1/13

er 19, 2016

2 / 13

Nested set property

- Theorem:
 - Suppose S₁ ⊃ S₂ ⊃ S₃ ⊃ · · · is a nested sequence of nonempty closed subsets of a compact metric space E.
 - Then

 $\bigcap_{i=1}^{\infty} S_i \neq \emptyset.$

Proof

- Suppose $\bigcap_{i=1}^{\infty} S_i = \emptyset$.
- Then $\{S_i^c : i = 1, 2, 3, ...\}$ is an open open cover of E.
- Since E is compact, there exist a finite list of indices n₁, n₂, ..., n_m, in increasing order, such that

$$E\subset \bigcup_{i=1}^m S^c_{n_i}.$$

- Now $S_{n_1}^c \subset S_{n_2}^c \subset \cdots \subset S_{n_m}^c$.
- Hence

$$E\subset \bigcup_{i=1}^m S_{n_i}^c=S_{n_m}^c.$$

• But then $E = S_{n_m}^c$, so $S_{n_m} = \emptyset$, contradicting our assumptions.

Example

Definition

- Definition:
 - Suppose S is a subset of a metric space E.
 - We say a point $p \in S$ is a *cluster point* of S if every open ball with center p contains an infinite number of points of S.
- Examples:
 - In \mathbb{R} , let $p_n = (-1)^n + \frac{1}{n}$, n = 1, 2, 3, ..., and let $S = \{p_1, p_2, p_3, ...\}$. Then -1 and 1 are cluster points of S.
 - Every $x \in \mathbb{R}$ is a cluster point of \mathbb{Q} .

• In \mathbb{R} , $S_n = [n, \infty)$, $n = 1, 2, 3, \ldots$, is a nested sequence of closed sets.

• Then $S_1 \supset S_2 \supset S_3 \supset \cdots$, but

$$\bigcap_{n=1}^{\infty} S_n = \emptyset$$

ber 19. 2016

5 / 13

ber 19, 2016

6 / 13

Theorem

Corollary

- Theorem: An infinite subset of a compact metric space has at least one cluster point.
- Proof:
 - Suppose S is an infinite subset of a compact metric space E.
 - Suppose S does not have a cluster point.
 - For every $p \in E$, let U_p be an open ball with center p which contains at most a finite number of points of S.
 - Then $\{U_p : p \in E\}$ is an open cover of E, and so has a finite subcover.
 - Let p_1, p_2, \ldots, p_n be points of E for which $\{U_{p_i} : i = 1, 2, \ldots, n\}$ is a finite subcover.
 - Then $E = \bigcup_{i=1}^{n} U_{p_i}$, and so S is finite.
 - This contradicts our assumption, and so S must have a cluster point.

Every infinite sequence in a compact metric space has a convergent subsequence.

Proof

- Let $\{p_i\}_{i=1}^{\infty}$ be a sequence in a compact metric space *E*.
- Let $S = \{p_i : i = 1, 2, 3, \ldots\}.$
- Suppose *S* is finite.
 - Then some point p occurs in the sequence an infinite number of times.
 - Hence p, p, p, \ldots is a convergent subsequence of $\{p_i\}_{i=1}^{\infty}$.
- Suppose *S* is infinite.
 - Let *p* be a cluster point of *S*.
 - For $m = 1, 2, 3, \ldots$, let p_{n_m} be a point in $\{p_i\}_{i=1}^{\infty}$ for which $d(p, p_{n_m}) < \frac{1}{m}$.
 - Given $\epsilon > 0$, choose a positive integer N such that $\frac{1}{N} < \epsilon$.
 - Then $d(p, p_{n_m}) < \epsilon$ for all m > N.
 - Hence $\{p_{n_m}\}_{m=1}^{\infty}$ is a convergent subsequence of $\{p_i\}_{i=1}^{\infty}$.

Corollary

- Corollary: A compact metric space is complete.
- Proof:
 - Let {p_i}[∞]_{i=1} be a Cauchy sequence in a compact metric space E.

 - Then {p_i}¹_{i=1} has a convergent subsequence.
 Hence {p_i}[∞]_{i=1} converges, and E is complete.

r 19, 2016

9 / 13

er 19, 2016

10 / 13

Corollary

- Corollary: A compact subset of a metric space is closed.
- Proof:
 - Suppose *S* is a compact subset of a metric space *E*.

 - Suppose { p_i}[∞]_{i=1} is a convergent sequence which lies in S.
 Since S is, as a metric space itself, complete, the limit of {p_i}[∞]_{i=1} lies in S.
 - Hence *S* is closed.
- Note: We have now shown that a compact subset of a metric space must be both closed and bounded.

September 19, 2016 13 / 13 Dan Sloughter (Furman University) Mathematics 450: Lecture 10