Mathematics 450: Lecture 30

Interchange of Limit Operations

Dan Sloughter

Furman University

November 4, 2016

Dan Sloughter (Furman University)

Mathematics 450: Lecture 30

November 4 2016

1 / 14

Dan Sloughter (Furman Unive

Mathematics 450: Lecture 3

November 4, 2016

Example

- Suppose $\{f_n\}_{n=1}^{\infty}$ is a sequence of continuous functions which converge uniformly to a function f on [0,1].
- Note: It follows that f is also continuous.
- Then, for any $x_0 \in [0, 1]$,

$$\lim_{x \to x_0} \left(\left(\lim_{n \to \infty} f_n \right)(x) \right) = \lim_{x \to x_0} f(x) = f(x_0)$$

and

$$\lim_{n\to\infty}\left(\lim_{x\to x_0}f_n(x)\right)=\lim_{n\to\infty}f_n(x_0)=f(x_0).$$

Example

$$\lim_{n\to\infty} a^{\frac{1}{n}} = \lim_{n\to\infty} e^{\frac{1}{n}\log(a)} = e^0 = 1.$$

• Define
$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{R}$$
 by $f(m, n) = \left(\frac{1}{m}\right)^{\frac{1}{n}}$.

Then

$$\lim_{n\to\infty} \left(\lim_{m\to\infty} f(n,m) \right) = \lim_{n\to\infty} 0 = 0,$$

but

$$\lim_{m\to\infty} \left(\lim_{n\to\infty} f(n,m) \right) = \lim_{m\to\infty} 1 = 1,$$

Example

• For $n = 1, 2, 3, \ldots$, define $f_n : [0, 1] \rightarrow \mathbb{R}$ by

$$f_n(x) = \begin{cases} 4n^2x, & \text{if } 0 \le x \le \frac{1}{2n}, \\ 4n - 4n^2x, & \text{if } \frac{1}{2n} < x \le \frac{1}{n}, \\ 0, & \text{if } \frac{1}{n} < x \le 1. \end{cases}$$

- Let f(x) = 0 for all $x \in [0, 1]$.
- Then $\lim_{n\to\infty} f_n = f$.
- But

$$\lim_{n\to\infty}\int_0^1 f_n(x)dx = \lim_{n\to\infty}1 = 1,$$

while

$$\int_0^1 \lim_{n\to\infty} f_n(x)dx = \int_0^1 f(x)dx = 0.$$

Dan Sloughter (Furman University

Mathematics 450: Lecture 30

Nov

Dan Sloughter (Furman University)

lathematics 450: Lecture 30

November 4, 2016

Theorem

- Suppose $a, b \in \mathbb{R}$, a < b.
- Suppose, for $n = 1, 2, 3, ..., f_n : [a, b] \to \mathbb{R}$ is continuous.
- Suppose $\{f_n\}_{n=1}^{\infty}$ converges uniformly and let $f=\lim_{n\to\infty}f_n$.
- Then

$$\lim_{n\to\infty}\int_a^b f_n(x)dx = \int_a^b f(x)dx.$$

Proof

• Given $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that, for all $x \in [a, b]$,

$$|f_n(x)-f(x)|<\frac{\epsilon}{b-a}$$

for all n > N.

• Hence, for all n > N and $x \in [a, b]$,

$$-\frac{\epsilon}{b-a} < f_n(x) - f(x) < \frac{\epsilon}{b-a}.$$

• Hence, for all n > N,

$$-\epsilon \leq \int_a^b (f_n(x) - f(x)) dx \leq \epsilon.$$

• That is, for all n > N,

$$\left|\int_a^b f_n(x)dx - \int_a^b f(x)dx\right| \leq \epsilon.$$

Proof (cont'd)

Thus

$$\lim_{n\to\infty}\int_a^b f_n(x)dx=\int_a^b f(x)dx.$$

Theorem

- Suppose $a, b \in \mathbb{R}$, a < b.
- Suppose, for $n = 1, 2, 3, ..., f_n : [a, b] \to \mathbb{R}$ is integrable.
- Suppose $\{f_n\}_{n=1}^{\infty}$ converges uniformly and let $f=\lim_{n\to\infty}f_n$.
- Then

$$\lim_{n\to\infty}\int_a^b f_n(x)dx=\int_a^b f(x)dx.$$

Proof

- Note: The proof is the same as the previous theorem if we can show that f is integrable.
- Given $\epsilon > 0$, there exists a positive integer n such that

$$|f_n(x)-f(x)|<\frac{\epsilon}{3(b-a)}$$

for all $x \in [a, b]$.

• Moreover, since f_n is integrable, there exist step functions g_1 and g_2 on [a,b] such that $g_1(x) \le f_n(x) \le g_2(x)$ for all $x \in [a,b]$ and

$$\int_a^b (g_2(x)-g_1(x))dx<\frac{\epsilon}{3}.$$

Dan Sloughter (Furman University)

Mathematics 450: Lecture 30

9 / 14

Proof (cont'd)

• Now, for all $x \in [a, b]$,

$$f_n(x) - \frac{\epsilon}{3(b-a)} < f(x) < f_n(x) + \frac{\epsilon}{3(b-a)}.$$

• So, for all $x \in [a, b]$,

$$g_1(x) - \frac{\epsilon}{3(b-a)} < f(x) < g_2(x) + \frac{\epsilon}{3(b-a)}.$$

Let

$$h_1(x) = g_1(x) - \frac{\epsilon}{3(b-a)}$$
 and $h_2(x) = g_2(x) + \frac{\epsilon}{3(b-a)}$.

• Then h_1 and h_2 are step functions with $h_1(x) \le f(x) \le g_2(x)$ for all $x \in [a, b]$.

Proof (cont'd)

And

$$\int_a^b (h_2(x) - h_1(x)) dx = \int_a^b (g_2(x) - g_1(x)) dx + \frac{2\epsilon}{3(b-a)} \int_a^b dx < \frac{\epsilon}{3} + \frac{2\epsilon}{3} = \epsilon.$$

• Hence *f* is integrable and the result follows.

Theorem

- Suppose $U \subset \mathbb{R}$ is an open interval.
- For $n=1,2,3,\ldots$, suppose $f_n:U\to\mathbb{R}$ has a continuous derivative f_n' .
- Suppose the sequence $\{f'_n\}_{n=1}^{\infty}$ converges uniformly on U and let $g = \lim_{n \to \infty} f'_n$.
- Suppose for some $a \in U$ the sequence $\{f_n(a)\}_{n=1}^{\infty}$ converges.
- Then $\{f_n\}_{n=1}^{\infty}$ converges, $f=\lim_{n\to\infty}f_n$ is differentiable, and

$$f' = \lim_{n \to \infty} f'_n$$
.

Dan Sloughter (Furman University

Mathematics 450: Lecture 30

11 / 1

an Sloughter (Furman University)

athematics 450: Lecture 30

November 4, 2016

12 / 1

Proof

• We know that, for any $x \in U$ and $n \in \mathbb{N}$,

$$\int_a^x f_n'(t)dt = f_n(x) - f_n(a).$$

• Hence, for any $x \in U$,

$$\lim_{n\to\infty}(f_n(x)-f_n(a))=\lim_{n\to\infty}\int_a^xf_n'(t)dt=\int_a^xg(t)dt.$$

• Hence, for any $x \in U$,

$$\lim_{n\to\infty} f_n(x) = \lim_{n\to\infty} \int_a^x f_n'(t)dt + \lim_{n\to\infty} f_n(a) = \int_a^x g(t)dt + f(a).$$

• Let $f = \lim_{n \to \infty} f_n$.

Proof (cont'd)

Hence we have

$$f(x) = f(a) + \int_a^x g(t)dt$$

for all $x \in U$.

• Hence f' = g.