Mathematics 450: Lecture 34

Series of Functions

Dan Sloughter

Furman University

November 16, 2016

Dan Sloughter (Furman University

Mathematics 450: Lecture 34

November 16, 2016

Dan Sloughtor /Eurma

Mathematics 450: Lecture 3

November 16, 2016

- . . .

Definition

- Suppose *E* is a metric space.
- Suppose, for $n = 1, 2, 3, \ldots, f_n : E \to \mathbb{R}$.
- We say the infinite series $\sum_{n=1}^{\infty} f_n$ converges absolutely if the infinite series $\sum_{n=1}^{\infty} f_n(p)$ converges absolutely for each $p \in E$.

Proposition

- Suppose *E* is a metric space.
- Suppose, for $n = 1, 2, 3, \ldots, f_n : E \to \mathbb{R}$.
- Then $\sum\limits_{n=1}^{\infty}f_n$ converges uniformly if and only if, given any $\epsilon>0$, there exists a positive integer N such that, if $n>m\geq N$, then

$$|f_{m+1}(p)+f_{m+2}(p)+\cdots+f_n(p)|<\epsilon$$

for all $p \in E$.

Proposition

- Suppose *E* is a metric space.
- Suppose, for $n=1,2,3,\ldots$, $f_n:E\to\mathbb{R}.$
- Suppose $\sum\limits_{n=1}^{\infty}a_n$ converges and, for $n=1,2,3,\ldots,\,|f_n(p)|\leq a_n$ for all $p\in E.$
- Then $\sum_{n=1}^{\infty} f_n$ converges absolutely and uniformly.

Dan Sloughter (Furman University) Mathematics 450: Lecture 34 November 16, 2016 3 / 13 Dan Sloughter (Furman University) Mathematics 450: Lecture 34 November 16, 2016 4 /

Proposition

- Suppose E is a metric space.
- Suppose, for $n = 1, 2, 3, ..., f_n : E \to \mathbb{R}$ is continuous.
- If $\sum\limits_{n=1}^{\infty}f_n$ converges uniformly, then $f=\sum\limits_{n=1}^{\infty}f_n$ is continuous on E.

Proposition

- Suppose $a, b \in \mathbb{R}$ with a < b
- Suppose, for $n = 1, 2, 3, ..., f_n : [a, b] \to \mathbb{R}$ is continuous.
- Suppose $\sum_{n=1}^{\infty} f_n$ converges uniformly.
- If $f = \sum_{n=1}^{\infty} f_n$, then

$$\int_a^b f(x)dx = \sum_{n=1}^\infty \int_a^b f_n(x)dx.$$

Proposition

- Suppose $U \subset \mathbb{R}$ is an open interval.
- Suppose, for $n=1,2,3,\ldots$, $f_n:U\to\mathbb{R}$ is differentiable and f_n' is continuous.
- Suppose $\sum_{n=1}^{\infty} f'_n$ converges uniformly on U.
- Suppose for some $a \in U$, $\sum_{n=1}^{\infty} f_n(a)$ converges.
- Then
 - $\sum_{n=1}^{\infty} f_n$ converges, and
 - if $f = \sum_{n=1}^{\infty} f_n$, then f is differentiable on U and

$$f' = \sum_{n=1}^{\infty} f'_n.$$

Definition

• Suppose a, c_0, c_1, c_2, \ldots are real numbers. We call the series

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots$$

a power series.

Theorem

- For a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$, exactly one of the following holds:
 - The series converges absolutely for all $x \in \mathbb{R}$. Moreover, for any positive real number r_1 , the convergence is uniform on $[a r_1, a + r_1]$.
 - There exists a positive real number r such that the series converges absolutely for all $x \in \mathbb{R}$ with |x a| < r and diverges for all $x \in \mathbb{R}$ with |x a| > r. Moreover, for any positive real number r_1 with $r_1 < r$, the convergence is uniform on $[a r_1, a + r_1]$.
 - The series converges only for x = a.

Dan Sloughter (Furman University

Mathematics 450: Lecture 34

N 1 16 0016

16, 2016 9 /

Proof

- Suppose the series $\sum_{n=0}^{\infty} c_n(x-a)^n$ converges for $x=\xi$, where $\xi \neq a$.
- Let b be a real number with $0 < b < |\xi a|$.
- Since $\sum_{n=0}^{\infty} c_n (\xi a)^n$ converges, $\lim_{n \to \infty} c_n (\xi a)^n = 0$.
- Hence there exists a real number M for which $|c_n(\xi-a)^n| \leq M$ for $n=0,1,2,3,\ldots$
- Now, if $|x a| \le b$, for n = 0, 1, 2, ...

$$|c_n(x-a)^n| = |c_n(x-a)^n| \cdot \frac{|\xi-a|^n}{|\xi-a|^n} = |c_n(\xi-a)^n| \cdot \left|\frac{x-a}{\xi-a}\right|^n \le M \left|\frac{b}{\xi-a}\right|^n.$$

• Hence $\sum_{n=0}^{\infty} c_n(x-a)^n$ converges absolutely and uniformly on [a-b,a+b] by comparison with the series $\sum_{n=0}^{\infty} M \left| \frac{b}{\xi-a} \right|^n$.

Proof (cont'd)

- Now let $S = \Big\{ \xi \in \mathbb{R} \ : \ \sum\limits_{n=0}^{\infty} c_n (\xi a)^n \text{ converges} \Big\}.$
- Then we may have
 - $S = \{a\}.$
 - *S* is unbounded, in which case $S = \mathbb{R}$, or
 - S is bounded.
- In the last case, let $r = \sup S a$, and the result follows.

Definition

- Consider a power series $\sum_{n=0}^{\infty} c_n(x-a)^n$.
- If r is a positive real number for which the series converges for all x with |x-a| < r and diverges for all x with |x-a| > r, then we call r the radius of convergence of the power series and we call the interval (a-r,a+r) the interval of convergence.
- If the series converges for all $x \in \mathbb{R}$, we say the *radius of convergence* is ∞ and the *interval of convergence* is $(-\infty, \infty)$.
- If the series converges only if x = a, we say the radius of convergence is 0.

Dan Sloughter (Furman University) Mathematics 450: Lecture 34 November 16, 2016 11 / 13 Dan Sloughter (Furman University) Mathematics 450: Lecture 34 November 16, 2016 12 / 13

Examples

- Example: $\sum\limits_{n=0}^{\infty} x^n$ has radius of convergence 1 and interval of convergence (-1,1).
 Example:
- - Consider $\sum\limits_{n=0}^{\infty} \frac{x^n}{n!}$. Then, for any $x \in \mathbb{R}$, $x \neq 0$,

$$\lim_{n\to\infty}\frac{\left|\frac{x^{n+1}}{(n+1)!}\right|}{\left|\frac{x^n}{n!}\right|}=\lim_{n\to\infty}\frac{|x|}{n+1}=0.$$

- $\, \bullet \,$ So, by the ratio test, the radius of convergence is ∞ and the interval of convergence is $(-\infty,\infty)$.
- Example:

 - Consider ∑_{n=0}[∞] n!xⁿ.
 Then, for any x ∈ ℝ, x ≠ 0, |(n+1)!xⁿ⁺¹| / |n!xⁿ| = (n+1)|x|.
 Hence, by the ratio test, the radius of convergence is 0.