Mathematics 450: Lecture 8

Sequences of Real Numbers

Dan Sloughter

Furman University

September 12, 2016

Sums

- Proposition:
 - Suppose $\{a_i\}_{i=1}^\infty$ and $\{b_i\}_{i=1}^\infty$ are convergent sequences of real numbers with

$$\lim_{n\to\infty}a_n=a \text{ and } \lim_{n\to\infty}b_n=b.$$

• Then $\{a_i + b_i\}_{i=1}^{\infty}$ is a convergent sequence with

$$\lim_{n\to\infty}(a_n+b_n)=a+b.$$

Proof

• Given $\epsilon > 0$, there exist positive integers N_1 and N_2 such that

$$|a_n-a|<rac{\epsilon}{2}$$

when $n > N_1$ and

$$|b_n-b|<\frac{\epsilon}{2}$$

when $n > N_2$.

- Let N be the maximum of N_1 and N_2 .
- Then, for n > N,

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

• Hence $\lim_{n\to\infty}(a_n+b_n)=a+b$.

Products

- Proposition:
 - Suppose $\{a_i\}_{i=1}^\infty$ and $\{a_i\}_{i=1}^\infty$ are convergent sequences of real numbers with

$$\lim_{n\to\infty} a_n = a \text{ and } \lim_{n\to\infty} b_n = b.$$

• Then $\{a_ib_i\}_{i=1}^{\infty}$ is a convergent sequence with

$$\lim_{n\to\infty}a_nb_n=ab.$$

Proof

- Since convergent sequences are bounded, we may find real numbers M_1 and M_2 such that $|a_n| < M_1$ and $|b_n| < M_2$ for all $n \in \mathbb{N}$.
- Let M be the maximum of M_1 and M_2 .
- Then M > 0, $|a| \le M$, and $|b| \le M$.
- Given $\epsilon > 0$, there exist integers N_1 and N_2 such that

$$|a_n-a|<rac{\epsilon}{2M}$$

when $n > N_1$ and

$$|b_n-b|<rac{\epsilon}{2M}$$

when $n > N_2$.

• Let N be the maximum of N_1 and N_2 .

Dan Sloughter (Furman University)

Mathematics 450: Lecture 8

C . I 10 0016

5 / 16

Proof (cont'd)

• Then, for any n > N,

$$|a_bb_n - ab| = |a_nb_n - ab_n + ab_n - ab|$$

$$= |b_n(a_n - a) + a(b_n - b)|$$

$$\leq |b_n(a_n - a)| + |a(b_n - b)|$$

$$= |b_n||a_n - a| + |a||b_n - b|$$

$$< M \cdot \frac{\epsilon}{2M} + M \cdot \frac{\epsilon}{2M}$$

$$= \epsilon.$$

• Hence $\lim_{n\to\infty} a_n b_n = ab$.

Reciprocals

- Proposition:
 - Suppose $\{a_i\}_{i=1}^{\infty}$ is a convergent sequence of real numbers with $\lim_{n\to\infty} a_n=a$.
 - Suppose $a \neq 0$ and $a_n \neq 0$ for all $n \in \mathbb{N}$.
 - Then $\{\frac{1}{2}\}_{i=1}^{\infty}$ is a convergent sequence with

$$\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{a}.$$

Proof

• Since |a| > 0, we may find a positive integer N_1 such that

$$|a_n-a|<\frac{|a|}{2}$$

for all $n > N_1$.

• Then, for $n > N_1$,

$$|a_n| = |a - (a - a_n)| \ge ||a| - |a - a_n|| = |a| - |a - a_n| > |a| - \frac{|a|}{2} = \frac{|a|}{2}.$$

• Given $\epsilon > 0$, there exists a positive integer N_2 such that

$$|a_n-a|<\frac{|a|^2\epsilon}{2}$$

for all $n > N_2$.

• Let N be the larger of N_1 and N_2 .

Proof (cont'd)

• We now have, for n > N,

$$\left|\frac{1}{a_n} - \frac{1}{a}\right| = \frac{|a - a_n|}{|a_n a|} < \frac{\frac{|a|^2 \epsilon}{2}}{|a| \cdot \frac{|a|}{2}} = \epsilon.$$

Thus

$$\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{a}.$$

Constant multiples

- Proposition:
 - Suppose $\{a_i\}_{i=1}^{\infty}$ is a convergent sequence of real numbers with

$$\lim_{n\to\infty}a_n=a.$$

- Then, for any real number c, $\{ca_i\}_{i=1}^\infty$ is a convergent sequence with

$$\lim_{n\to\infty} ca_n = ca.$$

- Proof: Apply the result for products with $b_i = c$ for i = 1, 2, 3, ...
- Note: In particular, if c = -1, we have

$$\lim_{n\to\infty}(-a_n)=-a.$$

Differences

- Proposition:
 - Suppose $\{a_i\}_{i=1}^\infty$ and $\{b_i\}_{i=1}^\infty$ are convergent sequences of real numbers with

$$\lim_{n\to\infty} a_n = a \text{ and } \lim_{n\to\infty} b_n = b.$$

• Then $\{a_i - b_i\}_{i=1}^{\infty}$ is a convergent sequence with

$$\lim_{n\to\infty}(a_n-b_n)=a-b.$$

• Proof: Apply the results for sums with the second sequence being $\{-b_i\}_{i=1}^{\infty}$.

Quotients

- Proposition:
 - Suppose $\{a_i\}_{i=1}^\infty$ and $\{b_i\}_{i=1}^\infty$ are convergent sequences of real numbers with

$$\lim_{n\to\infty} a_n = a \text{ and } \lim_{n\to\infty} b_n = b.$$

- Suppose $b \neq 0$ and $b_n \neq 0$ for all $n \in \mathbb{N}$.
- Then $\{\frac{a_i}{b_i}\}_{i=1}^{\infty}$ is a convergent sequence with

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{a}{b}.$$

• Proof: Apply the result for products with the second sequence being $\left\{\frac{1}{b_i}\right\}_{i=1}^{\infty}$.

Proposition

• Suppose $\{a_i\}_{i=1}^{\infty}$ and $\{b_i\}_{i=1}^{\infty}$ are convergent sequences of real numbers with

$$\lim_{n\to\infty} a_n = a \text{ and } \lim_{n\to\infty} b_n = b.$$

- Suppose $a_n \le b_n$ for n = 1, 2, 3, ...
- Then $a \leq b$.
- Proof:
 - Since $b_n a_n \ge 0$ for all n, and $\{x : x \ge 0\}$ is a closed set,

$$b-a=\lim_{n\to\infty}(b_n-a_n)\geq 0.$$

Hence b > a.

Monotonic sequences

- Definition: We say a sequence of real numbers $\{a_i\}_{i=1}^{\infty}$ is increasing if $a_1 \leq a_2 \leq a_3 \leq \cdots$.
- Definition: We say a sequence of real numbers $\{a_i\}_{i=1}^{\infty}$ is decreasing if $a_1 \geq a_2 \geq a_3 \geq \cdots$.
- Definition: We say a sequence of real numbers $\{a_i\}_{i=1}^{\infty}$ is monotonic if it is either increasing or decreasing.

Theorem

- Theorem: A bounded monotonic sequence of real numbers is convergent.
- Proof:
 - Suppose $\{a_i\}_{i=1}^{\infty}$ is a bounded increasing sequence of real numbers.
 - Let $a = \sup\{a_1, a_2, \ldots\}$.
 - Note: $a_n \leq a$ for all n.
 - Given $\epsilon > 0$, there exists a positive integer N for which $a \epsilon < a_N$.
 - Since $\{a_i\}_{i=1}^{\infty}$ is increasing, it follows that

$$a - \epsilon < a_n < a + \epsilon$$

for all n > N.

- Hence $|a_n a| < \epsilon$ for all n > N, and so $\lim_{n \to \infty} a_n = a$.
- The proof for decreasing sequences is similar.

Example

- Suppose $0 \le a < 1$.
- Then $\{a^n\}_{n=1}^{\infty}$ is a bounded decreasing sequence.
- Let $L = \lim_{n \to \infty} a^n$.
- Then

$$aL = a \lim_{n \to \infty} a^n = \lim_{n \to \infty} a^{n+1} = L.$$

- Hence 0 = L aL = L(1 a), and so L = 0 since $1 a \neq 0$.
- Note:
 - Since $|a^n| = |a|^n$, the result extends to show that

$$\lim_{n \to \infty} a^n = 0 \text{ whenever } -1 < a < 1.$$

• This also shows that if a is a real number with |a| > 1, then the sequence $\{a^n\}_{n=1}^{\infty}$ is unbounded.