Loading [MathJax]/jax/output/CommonHTML/jax.js

The Calculus of Functions of Several Variables

Answers for selected problems

Chapter 1


Section 1.1

2. (a) (4,5,0)

(b) (12,5,4)

(c) (12,8,8)

(d) (11,7,5)

5. (a) 14

(b) 118

(c) 514

(d) 36

6. (a) 17

(b) 22

(c) 23

(d) 66

(e) 19

11. No

12. (a) ||x||=5, Direction: ||u||=15(2,1)

(b) ||z||=3, Direction: ||u||=13(1,1,1)

(c) ||x||=14, Direction: ||u||=114(1,2,3)

(d) ||w||=15, Direction: ||u||=115(1,1,2,3)

15. (a) a=32, b=12; Yes, a and b are unique.

(b) a=x+y2, b=yx2


Section 1.2

1. (a) 16

(b) 32

(c) 58

(d) 5

3. (a) 18

(b) 36

(c) 40

(d) 126

4. (a) 0.6435 radians, or 36.87

(c) 1.9106 radians, or 109.47

(e) 0.6435 radians, or 36.87

5. The angle at vertex (2,1) is 0.3218 radians, at vertex (1,2) is 2.0344 radians, and at vertex (2,1) is π4 radians.

7. (a) 2.1588 radians; 0.5880 radians

(b) 1.9913 radians; 0.6155 radians; 1.1503 radians

(c) 1.0282 radians; 0.6847 radians; 1.3096 radians; 1.8320 radians

(d) 1.4355 radians; 1.2977 radians; 1.1543 radians; 1.011 radians; 0.8309 radians

8. (a) Coordinate: 417; Projection: (1617,417)

(b) Coordinate: 311; Projection: (311,911,311)

(c) Coordinate: 538; Projection: (538,538,1519)

(d) Coordinate: 532; Projection: (59,518,59,56)

11. x=(57,1514,514)+(27,1314,4714)


Section 1.3

1. (a) x×y=(1,3,7)

(b) x×y=(2,16,5)

(c) x×y=(36,12,0)

(d) x×y=(6,2,14)

3. 11

5. 3

7. 92

9. 42

13. For example, e2×(e2×e3)=e3, whereas (e2×e2)×e3=0.


Section 1.4

1. Vector equation: y=t(1,2)+(2,3)=(t+2,2t+3)

Parametric equations: x=t+2y=2t+3

3. (a) Vector equation: y=t(5,5)+(1,3)=(5t1,5t3)

Parametric equations: x=5t1y=5t3

(b) Vector equation:

y=t(3,1,2)+(2,1,3)=(3t+2,t+1,2t+3)

Parametric equations: x=3t+2y=t+1z=2t+3

(c) Vector equation:

y=t(1,2,3,3)+(3,2,1,4)=(t+3,2t+2,3t+1,3t+4)

Parametric equations: w=t+3x=2t+2y=3t+1z=3t+4

(d) Vector equation:

y=t(3,1,2)+(4,3,2)=(3t+4,t3,2t+2)

Parametric equations: x=3t+4y=t3z=2t+2

5. 10857

7. 469714

9. Vector equation:

y=t(3,6,2,3)+s(0,2,2,2)+(2,3,4,1)

Parametic equations: w=3t+2x=6t+2s+3y=2t2s+4z=3t+2s1

11. 3

13. n=(1,0)

Normal equation: (1,0)(x2,y)=0, or x=2

15. n=(1,4)

Normal equation: (1,4)(x3,y2)=0, or x+4y=11

16. n=(11,8,7)

Normal equation:

(11,8,7)(x1,y2,z+1)=0, or 11x+8y+7z=20

17. 45

19. 323

21. 0.7017 radians

23. 2xy=3 is the equation of one such plane.

27. y=2t23, z=st+113


Section 1.5

2. (a) Dimension of the domain space =2; dimension of the range space =3; f is linear

(b) Dimension of the domain space =2; dimension of the range space =2, f is neither linear nor affine

(c) Dimension of the domain space =3; dimension of the range space =3; f is linear

(d) Dimension of the domain space =3; dimension of the range space =2; f is linear

(e) Dimension of the domain space =3; dimension of the range space =4; f is affine

(f) Dimension of the domain space =2; dimension of the range space =1; f is affine

(g) Dimension of the domain space =1; dimension of the range space =2; f is linear

(h) Dimension of the domain space =4; dimension of the range space =2; f is linear

(i) Dimension of the domain space =2; dimension of the range space =2; f is neither linear nor affine

(j) Dimension of the domain space =2; dimension of the range space =3; f is neither linear nor affine

3. (a) M=[1123]

(b) M=[21131203]

(c) M=[314]

(d) M=[5]

(e) M=[432]

(f) M=[111310012]

(g) M=[2003111123]

(h) M=[1001]

(i) M=[21131203]

5. (a) [44]

(b) [5114]

(c) [3]

(d) [2103]

7. M=[0110]

8. M=[0110]

10. M=[cos(θ)sin(θ)sin(θ)cos(θ)]


Section 1.6

1. (a) [6963123]

(b) [153124]

(c) [7432107]

(d) [1418102428]

2. (a) [121]

(b) [41494]

(c) [12134779]

(d) [219]

3. (a) [690336363]

(b) [473023413]

(c) [223313156]

(d) [6103135532]

(e) [341126111166]

(f) [71135512175]

5. (a) 5

(b) 4

(c) 175

(d) 17

(e) 143

(f) 300

7. 32

8. 8

14. This is the set of all points which satisfy xyz=0.