Chapter 1
Section 1.1
2. (a) (4,5,0)
(b) (12,5,4)
(c) (−12,8,−8)
(d) (−11,7,−5)
5. (a) √14
(b) √118
(c) 5√14
(d) 3√6
6. (a) √17
(b) √22
(c) 2√3
(d) √66
(e) √19
11. No
12. (a) ||x||=√5, Direction: ||u||=1√5(2,1)
(b) ||z||=√3, Direction: ||u||=1√3(1,1,−1)
(c) ||x||=√14, Direction: ||u||=1√14(−1,2,3)
(d) ||w||=√15, Direction: ||u||=1√15(1,−1,2,−3)
15. (a) a=32, b=−12; Yes, a and b are unique.
(b) a=x+y2, b=y−x2
Section 1.2
1. (a) −16
(b) −32
(c) −58
(d) 5
3. (a) −18
(b) −36
(c) −40
(d) −126
4. (a) 0.6435 radians, or 36.87∘
(c) 1.9106 radians, or 109.47∘
(e) 0.6435 radians, or 36.87∘
5. The angle at vertex (−2,1) is 0.3218 radians, at vertex (1,2) is 2.0344 radians, and at vertex (2,1) is π4 radians.
7. (a) 2.1588 radians; 0.5880 radians
(b) 1.9913 radians; 0.6155 radians; 1.1503 radians
(c) 1.0282 radians; 0.6847 radians; 1.3096 radians; 1.8320 radians
(d) 1.4355 radians; 1.2977 radians; 1.1543 radians; 1.011 radians; 0.8309 radians
8. (a) Coordinate: −4√17; Projection: (−1617,−417)
(b) Coordinate: 3√11; Projection: (−311,911,311)
(c) Coordinate: 5√38; Projection: (538,−538,1519)
(d) Coordinate: 53√2; Projection: (59,−518,59,56)
11. x=(57,1514,514)+(27,1314,−4714)
Section 1.3
1. (a) x×y=(1,3,7)
(b) x×y=(−2,16,−5)
(c) x×y=(36,−12,0)
(d) x×y=(−6,2,−14)
3. 11
5. 3
7. 92
9. 42
13. For example, e2×(e2×e3)=−e3, whereas (e2×e2)×e3=0.
Section 1.4
1. Vector equation: y=t(1,−2)+(2,3)=(t+2,−2t+3)
Parametric equations: x=t+2y=−2t+3
3. (a) Vector equation: y=t(5,5)+(−1,−3)=(5t−1,5t−3)
Parametric equations: x=5t−1y=5t−3
(b) Vector equation:
y=t(3,1,−2)+(2,1,3)=(3t+2,t+1,−2t+3)
Parametric equations: x=3t+2y=t+1z=−2t+3
(c) Vector equation:
y=t(1,2,−3,3)+(3,2,1,4)=(t+3,2t+2,−3t+1,3t+4)
Parametric equations: w=t+3x=2t+2y=−3t+1z=3t+4
(d) Vector equation:
y=t(3,−1,−2)+(4,−3,2)=(3t+4,−t−3,−2t+2)
Parametric equations: x=3t+4y=−t−3z=−2t+2
5. 10857
7. 469714
9. Vector equation:
y=t(−3,6,−2,−3)+s(0,2,−2,2)+(2,3,4,−1)
Parametic equations: w=−3t+2x=6t+2s+3y=−2t−2s+4z=−3t+2s−1
11. 3
13. n=(1,0)
Normal equation: (1,0)⋅(x−2,y)=0, or x=2
15. n=(1,4)
Normal equation: (1,4)⋅(x−3,y−2)=0, or x+4y=11
16. n=(11,8,7)
Normal equation:
(11,8,7)⋅(x−1,y−2,z+1)=0, or 11x+8y+7z=20
17. 4√5
19. 3√23
21. 0.7017 radians
23. 2x−y=3 is the equation of one such plane.
27. y=2t−23, z=−s−t+113
Section 1.5
2. (a) Dimension of the domain space =2; dimension of the range space =3; f is linear
(b) Dimension of the domain space =2; dimension of the range space =2, f is neither linear nor affine
(c) Dimension of the domain space =3; dimension of the range space =3; f is linear
(d) Dimension of the domain space =3; dimension of the range space =2; f is linear
(e) Dimension of the domain space =3; dimension of the range space =4; f is affine
(f) Dimension of the domain space =2; dimension of the range space =1; f is affine
(g) Dimension of the domain space =1; dimension of the range space =2; f is linear
(h) Dimension of the domain space =4; dimension of the range space =2; f is linear
(i) Dimension of the domain space =2; dimension of the range space =2; f is neither linear nor affine
(j) Dimension of the domain space =2; dimension of the range space =3; f is neither linear nor affine
3. (a) M=[1−12−3]
(b) M=[21−1−312−0−3]
(c) M=[314]
(d) M=[−5]
(e) M=[4−32]
(f) M=[1−113−100−12]
(g) M=[2−00−31−11−12−3]
(h) M=[1001]
(i) M=[21−1−312−0−3]
5. (a) [−4−4]
(b) [−511−4]
(c) [3]
(d) [2103]
7. M=[0110]
8. M=[−0−1−1−0]
10. M=[−cos(θ)−sin(θ)−sin(θ)−cos(θ)]
Section 1.6
1. (a) [−6−9−6−312−3]
(b) [−15−31−24]
(c) [−7−4−3−210−7]
(d) [−1418−102−428]
2. (a) [121]
(b) [−414−9−4]
(c) [1213−4−7−7−9]
(d) [219]
3. (a) [−69−0−33−6−36−3]
(b) [47−302−341−3]
(c) [−22−3−31−3−15−6]
(d) [−610−3−13−5−53−2]
(e) [−34112611116−6]
(f) [711−35−51217−5]
5. (a) 5
(b) −4
(c) 175
(d) 17
(e) −143
(f) 300
7. 32
8. 8
14. This is the set of all points which satisfy x−y−z=0.