Mathematics 160: Lecture 17

Linear Recurrences

Dan Sloughter

Furman University

October 10, 2011

October 10, 2011

Definition

• We say a sequence x_0, x_1, x_2, \dots is generated by a kth-order recursion relation if

$$x_{n+k} = f(x_n, x_{n+1}, \dots, x_{n+k-1}).$$

for n = k, k + 1, k + 2, ...

• We say the recurrence is *linear* if for some constants $a_0, a_1, \ldots a_{k-1}$,

$$f(x_n, x_{n+1}, \dots, x_{n+k-1}) = a_0 x_n + a_1 x_{n+1} + \dots + a_{k-1} x_{n+k-1}.$$

Example

- Given a constant a, $x_{n+1} = ax_n$ is a first-order linear recurrence relation.
- We have

$$x_1 = ax_0$$
,

$$x_2=ax_1=a^2x_0,$$

$$x_3 = ax_2 = a^3x_0,$$

$$x_4=ax_3=a^4x_0,$$

and so on.

- In general, $x_n = a^n x_0$.
- In particular, we have exponential growth if a > 1 and exponential decay if 0 < a < 1.

October 10, 2011

Example

• Starting with $x_0 = 1$ and $x_1 = 1$, the second-order linear recurrence relation

$$x_{n+2} = x_n + x_{n+1}$$

generates the Fibonacci sequence: $1, 1, 2, 3, 5, 8, 13, 21, \ldots$

Let

$$V_0 = egin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and, for $n=1,2,3,\ldots,\ V_n = egin{bmatrix} x_n \\ x_{n+1} \end{bmatrix}$.

• Then $V_{n+1} = AV_n$ where

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$
.

• Iterating, we have $V_n = A^n V_0$.

Second-order recurrence relations

• Consider a sequence x_0, x_1, x_3, \dots generated by the second-order linear recurrence relation

$$x_{n+2} = ax_n + bx_{n+1}.$$

• Let, for n = 0, 1, 2, ...,

$$V_n = \begin{bmatrix} x_n \\ x_{n+1} \end{bmatrix}$$
 and $A = \begin{bmatrix} 0 & 1 \\ a & b \end{bmatrix}$.

Then

$$V_{n+1} = \begin{bmatrix} x_{n+1} \\ x_{n+2} \end{bmatrix} = \begin{bmatrix} x_{n+1} \\ ax_n + bx_{n+1} \end{bmatrix} = AV_n.$$

• Iterating, we have $V_n = A^n V_0$.

Second-order recurrence relations (cont'd)

- Now suppose A is diagonalizable.
- That is, suppose there exists a diagonal matrix D and an invertible matrix P such that $D = P^{-1}AP$.
- Then $A^n = PD^nP^{-1}$.
- Now if λ_1 and λ_2 are the eigenvalues of A, then

$$D^n = \begin{bmatrix} \lambda_1^n & 0 \\ 0 & \lambda_2^n \end{bmatrix}.$$

- It follows that the entries of $V_n = A^n V_0$ are linear combinations of λ_1^n and λ_2^n .
- In particular, for some constants c_1 and c_2 ,

$$x_n = c_1 \lambda_1^n + c_2 \lambda_2^n$$
.

Example

• For the Fibonacci sequence $x_{n+2} = x_n + x_{n+1}$,

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

• The characteristic polynomial of A is

$$c_A(\lambda) = \det \begin{bmatrix} \lambda & -1 \\ -1 & \lambda - 1 \end{bmatrix} = \lambda^2 - \lambda - 1.$$

So the eigenvalues are

$$\lambda_1 = \frac{1-\sqrt{5}}{2}$$
 and $\lambda_2 = \frac{1+\sqrt{5}}{2}$.

• Hence, for some constants c_1 and c_2 ,

$$x_n=c_1\left(rac{1-\sqrt{5}}{2}
ight)^n+c_2\left(rac{1+\sqrt{5}}{2}
ight)^n.$$

Example (cont'd)

• Evaluating for $x_0 = 1$ and $x_1 = 1$, we have

$$c_1+c_2=1$$

$$\lambda_1 c_1 + \lambda_2 c_2 = 1.$$

• Using Cramer's rule, we have

$$c_1 = \frac{\lambda_2 - 1}{\lambda_2 - \lambda_1} = -\frac{\lambda_1}{\sqrt{5}}$$
$$1 - \lambda_1 \qquad \lambda_2$$

$$c_2=rac{1-\lambda_1}{\lambda_2-\lambda_1}=rac{\lambda_2}{\sqrt{5}}.$$

Hence

$$x_n = \frac{1}{\sqrt{5}}(\lambda_2^{n+1} - \lambda_1^{n+1}).$$

Example (cont'd)

For example,

$$x_{20} = \frac{\lambda_2^{21} - \lambda_1^{21}}{\sqrt{5}}$$

$$= \frac{(5473\sqrt{5} + 12238) - (-5473\sqrt{5} + 12238)}{\sqrt{5}}$$

$$= 10946.$$

Note: by themselves,

$$\frac{\lambda_2^{21}}{\sqrt{5}} = 10945.9999817284$$

and

$$\frac{\lambda_1^{21}}{\sqrt{5}} = -0.0000182715.$$

October 10, 2011

Example (cont'd)

- In general, $\frac{\lambda_2^{n+1}}{\sqrt{5}}$ provides a good approximation for x_n when n is large.
- This follows from
 - noting that $|\lambda_1| < |\lambda_2|$, and
 - $x_n = \frac{\lambda_2^{n+1}}{\sqrt{5}} \left(1 \left(\frac{\lambda_1}{\lambda_2} \right)^{n+1} \right).$
- We call λ_2 the *dominant* eigenvalue.

Theorem

Suppose

$$x_{n+k} = a_0x_n + a_1x_{n+1} + \cdots + a_{k-1}x_{n+k-1}.$$

Let

$$V_{n} = \begin{bmatrix} x_{n} \\ x_{n+1} \\ \vdots \\ x_{n+k-1} \end{bmatrix} \text{ and } A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a_{0} & a_{1} & a_{2} & \cdots & a_{k-1} \end{bmatrix}$$

so that $V_{n+1} = AV_n$.

• If $\lambda_1, \lambda_2, \ldots, \lambda_k$ are distinct real eigenvalues of A, then

$$x_n = c_1 \lambda_1^n + c_2 \lambda_2^n + \dots + c_k \lambda_k^n$$

for some constants c_1, c_2, \ldots, c_k .