Mathematics 160: Lecture 19 Dot Products

Dan Sloughter

Furman University

October 12, 2011

Oan Sloughter (Furman University)

Mathematics 160: Lecture 19

October 12, 2011

1 / 12

Higher dimensions

• We let \mathbb{R}^n denote the space of all ordered *n*-tuples of real numbers. That is,

$$\mathbb{R}^n = \{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n \in \mathbb{R}\}.$$

• We may identify a point $P=(x_1,x_2,\ldots,x_n)$ in \mathbb{R}^n with the vector

$$\overrightarrow{OP} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
.

- Addition, subtaction, and scalar multiplication is the same as for matrices (or for vectors in \mathbb{R}^2 and \mathbb{R}^3).
- If $\vec{v} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$, then the *length* or *norm* of \vec{v} is

$$\|\vec{\mathbf{v}}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Dan Sloughter

Mathematics 160: Lecture 1

October 12, 2011

Example

If

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} -2 \\ 1 \\ 3 \\ -1 \end{bmatrix}$,

then

$$4\vec{v} = \begin{bmatrix} 4 \\ 8 \\ 12 \\ 16 \end{bmatrix}, 2\vec{v} - 3\vec{w} = \begin{bmatrix} 8 \\ 1 \\ -3 \\ 11 \end{bmatrix},$$

and
$$\|\vec{v}\| = \sqrt{1+4+9+16} = \sqrt{30}$$
.

Definition

• The dot product of vectors

$$\vec{u} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$

in \mathbb{R}^n is the scalar

$$\vec{u}\cdot\vec{v}=x_1y_1+x_2y_2+\cdots+x_ny_n.$$

Example: if

$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} -2 \\ 3 \\ 4 \end{bmatrix}$,

then

$$\vec{u} \cdot \vec{v} = -2 + 6 - 12 = -8.$$

3 / 12

Properties

Example

- Suppose \vec{u} , \vec{v} , and \vec{w} are vectors in \mathbb{R}^n and \vec{a} is a scalar. Then
 - $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$.
 - $\vec{u} \cdot \vec{0} = 0$.
 - $\bullet \ \vec{u} \cdot \vec{u} = ||\vec{u}||^2,$
 - $(a\vec{u}) \cdot \vec{v} = a(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (a\vec{v}),$
 - $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.
 - $\vec{u} \cdot (\vec{v} \vec{w}) = \vec{u} \cdot \vec{v} \vec{u} \cdot \vec{w}$.

• From the properties, it follows that for any vectors \vec{u} and \vec{v} in \mathbb{R}^n ,

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$$

$$= \vec{u} \cdot \vec{u} + 2(\vec{u} \cdot \vec{v}) + \vec{v} \cdot \vec{v}$$

$$= \|\vec{u}\|^2 + 2(\vec{u} \cdot \vec{v}) + \|\vec{v}\|^2.$$

October 12, 2011

Angles

- Similarly, $\|\vec{u} \vec{v}\|^2 = \|\vec{u}\|^2 2(\vec{u} \cdot \vec{v}) + \|\vec{v}\|^2$.
- Note: \vec{u} , \vec{v} , and $\vec{u} \vec{v}$ are the sides of a triangle.
- Now suppose \vec{u} and \vec{v} are nonzero vectors in \mathbb{R}^2 or \mathbb{R}^3 , and θ is the angle between \vec{u} and \vec{v} .
- By the law of cosines,

$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos(\theta).$$

• Hence we must have $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\theta)$, or

$$\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}.$$

Example

• If θ is the smallest angle, measured in the counterclockwise direction, between

$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$,

then

$$\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{2 - 2 + 12}{\sqrt{14}\sqrt{21}} = \frac{12}{7\sqrt{6}}.$$

Hence

$$heta = \cos^{-1}\left(rac{12}{7\sqrt{6}}
ight) pprox 0.7649.$$

Cauchy-Schwarz Inequality

• Given vectors \vec{v} and \vec{u} in \mathbb{R}^n , define

$$p(t) = ||t\vec{u} - \vec{v}||^2 = t^2 ||\vec{u}||^2 - 2t(\vec{u} \cdot \vec{v}) + ||\vec{v}||^2.$$

• Since $p(t) \ge 0$ for all t, it follows, from the quadratic formula, that

$$4(\vec{u}\cdot\vec{v})^2-4\|\vec{u}\|^2\|\vec{v}\|^2\leq 0.$$

Hence

$$|\vec{u}\cdot\vec{v}|\leq ||\vec{u}||||\vec{v}||,$$

which we call the Cauchy-Schwarz Inequality.

Cauchy-Schwarz Inequality (cont'd)

• Note: from the proof, we see that

$$|\vec{u} \cdot \vec{v}| = ||\vec{u}|| ||\vec{v}||$$

if and only if $||t\vec{u} - \vec{v}|| = 0$ for some value of t.

• Hence we have equality in the Cauchy-Schwarz inequality if and only if \vec{u} and \vec{v} are parallel.

Definition

• Given vectors \vec{u} and \vec{v} in \mathbb{R}^n , we call

$$\theta = \cos^{-1}\left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}\right)$$

the angle between \vec{u} and \vec{v} .

• Note: by the definition of the inverse cosine function, this means that θ is the angle such that $0 \le \theta \le \pi$ and

$$\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{u}\|}.$$

Orthogonality

- Note: if the angle θ between the nonzero vectors \vec{u} and \vec{v} in \mathbb{R}^3 or \mathbb{R}^2 is $\frac{\pi}{2}$, then $\cos(\theta) = 0$, and so $\vec{u} \cdot \vec{v} = 0$.
- More generally, we say vectors in \vec{u} and \vec{v} in \mathbb{R}^n are orthogonal, or perpendicular, if $\vec{u} \cdot \vec{v} = 0$.
- Note: the definition implies that $\vec{0}$ is orthogonal to any vector \vec{u} in \mathbb{R}^n .