Mathematics 160: Lecture 20

Projections

Dan Sloughter

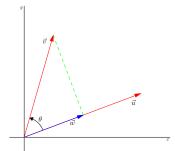
Furman University

October 21, 2011

October 21, 2011

Projections in \mathbb{R}^2

• Consider two non-zero vectors, \vec{u} and \vec{v} , in \mathbb{R}^2 , and let θ be the angle between them.



• If \vec{w} is the orthogonal projection of \vec{v} onto \vec{u} , either in the same direction as \vec{u} if $0 \le \theta \le \frac{\pi}{2}$, or in the opposite direction if $\frac{\pi}{2} < \theta \le \pi$, then

$$\|\vec{w}\| = \|\vec{v}\||\cos(\theta)| = \frac{|\vec{v} \cdot \vec{u}|}{\|\vec{u}\|}.$$

October 21, 2011

Projections in \mathbb{R}^2 (cont'd)

- Note: $\vec{e} = \frac{1}{\|\vec{u}\|} \vec{u}$ is a vector of unit length in the same direction as \vec{u} .
- We call the vector

$$\frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|} \vec{e} = \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|^2} \vec{u}$$

the projection of \vec{v} on \vec{u} , which we denote $\text{proj}_{\vec{u}}$ \vec{v} .

We call

$$\frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|}$$

the component of \vec{v} in the direction of \vec{u} .

Example

Let

$$\vec{v} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 and $\vec{u} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

Then

$$\operatorname{proj}_{\vec{u}} \vec{v} = \frac{7}{10} \vec{u} = \begin{bmatrix} \frac{21}{10} \\ \frac{7}{10} \end{bmatrix}.$$

• The component of \vec{v} in the direction of \vec{u} is $\frac{7}{\sqrt{10}}$

Projections in \mathbb{R}^n

- Now suppose \vec{v} and \vec{u} are nonzero vectors in \mathbb{R}^n .
- We wish to write $\vec{v} = \vec{v}_1 + \vec{v}_2$, where \vec{v}_1 is parallel to \vec{u} and \vec{v}_2 is orthogonal to \vec{u} .
- That is, we want to find a scalar t such that $\vec{v}_1 = t\vec{u}$ and $\vec{v}_2 = \vec{v} \vec{v}_1$ is orthogonal to \vec{u} .
- So we want

$$0 = (\vec{v} - t\vec{u}) \cdot \vec{u} = \vec{v} \cdot \vec{u} - t\vec{u} \cdot \vec{u} = \vec{v} \cdot \vec{u} - t \|\vec{u}\|^{2}.$$

• Hence we must have

$$t = \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|^2}.$$

Dan Sloughter (Furman University

Mathematics 160: Lecture 20

October 21, 2011

5/

Definition

- Suppose \vec{v} and \vec{u} are vectors in \mathbb{R}^n with $\vec{u} \neq \vec{0}$.
- We call

$$\operatorname{proj}_{ec{u}} ec{v} = rac{ec{v} \cdot ec{u}}{\|ec{u}\|^2} ec{u}$$

the projection of \vec{v} on \vec{u} , and we call

$$\frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|}$$

the component of \vec{v} in the direction of \vec{u} .

• Note: if $\|\vec{u}\| = 1$, that is, \vec{u} is a *unit vector*, then

$$\operatorname{proj}_{\vec{u}} \vec{v} = (\vec{v} \cdot \vec{u})\vec{u}$$

and the component of \vec{v} in the direction of \vec{u} is $\vec{v} \cdot \vec{u}$.

Dan Sloughter (Furman University)

Mathematics 160: Lecture 2

October 21, 2011

6 /

Example

If

$$\vec{v} = \begin{bmatrix} 2 \\ -1 \\ -2 \\ 3 \end{bmatrix}$$
 and $\vec{u} = \begin{bmatrix} -3 \\ 1 \\ -2 \\ -4 \end{bmatrix}$,

then

$$\operatorname{proj}_{\vec{u}} \vec{v} = -\frac{15}{30} \vec{u} = \begin{bmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ 1 \\ 2 \end{bmatrix}$$

and the component of \vec{v} in the direction of \vec{u} is $-\frac{1}{2}\sqrt{30}$.

Example

• Suppose \vec{v} is a vector in \mathbb{R}^n and, for $j=1,2,\ldots,n$, \vec{e}_j is a vector in \mathbb{R}^n with

$$ec{v} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}$$
 and $ec{e}_j = egin{bmatrix} 0 \ 0 \ 1 \ 0 \ dots \ 0 \end{bmatrix}$ $\leftarrow j$ th row 0

Then

$$\operatorname{proj}_{\vec{e}_i} \vec{v} = (\vec{v} \cdot \vec{e}_i) \vec{e}_i = x_i \vec{e}_i,$$

and the component of \vec{v} in the direction of $\vec{e_j}$ is just the jth coordinate of \vec{v} , namely, x_j .