Mathematics 160: Lecture 21 Lines

Dan Sloughter

Furman University

October 24, 2011

Lines in \mathbb{R}^2 .

• Suppose ℓ is a line in \mathbb{R}^2 passing through the points \vec{p}_0 and \vec{q}_0 .

• Note: $\vec{d} = \vec{q}_0 - \vec{p}_0$ is a vector parallel to ℓ .

• Note: \vec{p} is on ℓ if and only if $\vec{p} - \vec{p_0}$ is parallel to \vec{d} .

• That is, \vec{p} is on ℓ if and only if $\vec{p} - \vec{p}_0 = t\vec{d}$ for some scalar t.

• That is, \vec{p} is on ℓ if and only if $\vec{p} = \vec{p}_0 + t\vec{d}$ for some scalar t.

Definition

- Given \vec{p}_0 and \vec{d} in \mathbb{R}^n , we call the set of all points $\vec{p}_0 + t\vec{d}$, where t is a scalar, the *line* through \vec{p}_0 with direction \vec{d} .
- We call

$$\vec{p} = \vec{p}_0 + t\vec{d}$$

the vector equation of the line.

• Note: if the line ℓ passes through \vec{p}_0 and \vec{q}_0 , then the vector equation of ℓ is

$$\vec{p} = \vec{p}_0 + t(\vec{q}_0 - \vec{p}_0).$$

Scalar equations

• If ℓ has vector equation $\vec{p} = \vec{p}_0 + t\vec{d}$, where

$$\vec{p} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \vec{p}_0 = \begin{bmatrix} p_1 \\ p_2 \\ \vdots \\ p_n \end{bmatrix}, \text{ and } \vec{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix},$$

then

$$x_1 = p_1 + td_1,$$

$$x_2 = p_2 + td_2,$$

$$\vdots = \vdots$$

$$x_n = p_n + td_n.$$

• We call these equations the scalar equations, or parametric equations, of ℓ .

Example

• To find the equation of the line ℓ through the points

$$ec{q}_0 = egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $ec{p}_0 = egin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$,

we first find

$$ec{d}=ec{q}_0-ec{p}_0=egin{bmatrix} -1\ 3\ 4 \end{bmatrix}.$$

• Then the vector equation of the line is

$$ec{p} = egin{bmatrix} 2 \ -1 \ -1 \end{bmatrix} + t egin{bmatrix} -1 \ 3 \ 4 \end{bmatrix}.$$

October 24, 2011

October 24, 2011

Example

• Suppose we wish to find the distance D from the point

$$\vec{q} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

to the line ℓ with equation

$$ec{
ho} = egin{bmatrix} 1 \ 1 \end{bmatrix} + t egin{bmatrix} 2 \ 1 \end{bmatrix}.$$

Let

$$\vec{v} = \begin{bmatrix} 2 \\ 5 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$
 and $\vec{d} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Example (cont'd)

• The parametric equations of the line are

$$x = 2 - t$$

$$y = -1 + 3t$$

$$z=-1+4t.$$

Example (cont'd)

• Then if we let

$$\vec{v}_1 = \operatorname{proj}_{\vec{d}} \vec{v} = \frac{6}{5} \vec{d} = \begin{bmatrix} \frac{12}{5} \\ \frac{6}{5} \end{bmatrix},$$

the desired distance is the length of

$$ec{v}_2 = ec{v} - ec{v_1} = egin{bmatrix} -rac{7}{5} \ rac{14}{5} \end{bmatrix}.$$

Hence

$$D=\frac{7}{5}\sqrt{5}.$$

• Note: the point on ℓ closest to \vec{q} is

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{12}{5} \\ \frac{6}{5} \end{bmatrix} = \begin{bmatrix} \frac{17}{5} \\ \frac{11}{5} \end{bmatrix}.$$

Normal form in \mathbb{R}^2

- Let ℓ be a line in \mathbb{R}^2 with vector equation $\vec{p} = \vec{p}_0 + t\vec{d}$.
- Let \vec{n} be a nonzero vector orthogonal to \vec{d} .
- For example, if

 $\vec{d} = \begin{vmatrix} u \\ v \end{vmatrix},$

then we could take

 $\vec{n} = \begin{bmatrix} -v \\ u \end{bmatrix}$.

cd

- Note: if \vec{p} is a point on ℓ , then $\vec{p} \vec{p}_0 = t\vec{d}$ for some scalar t, and so $\vec{p} - \vec{p}_0$ is orthogonal to \vec{n} .
- Note:
 - If \vec{p} is a point in \mathbb{R}^2 such that $\vec{p}-\vec{p}_0$ is orthogonal to \vec{n} , then $\vec{p}-\vec{p}_0$ satisfies the equation $\vec{n} \cdot \vec{x} = \vec{0}$.
 - Since \vec{d} is the only basic solution to this equation, it follows that $\vec{p} - \vec{p}_0 = t\vec{d}$ for some scalar t.
 - That is, \vec{p} is on ℓ .

Example

• Suppose ℓ passes through the points

$$ec{p}_0 = egin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $ec{q}_0 = egin{bmatrix} 2 \\ 5 \end{bmatrix}$.

Let

$$\vec{d}=\vec{q}_0-\vec{p}_0=egin{bmatrix}1\\3\end{bmatrix}.$$

Then

$$\vec{n} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$$

is orthogonal to \vec{d} .

• So the normal equation for ℓ is

$$\begin{bmatrix} -3 \\ 1 \end{bmatrix} \cdot \left(\begin{bmatrix} x \\ y \end{bmatrix} - \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = 0.$$

Normal form in \mathbb{R}^2 (cont'd)

- Conclusion: \vec{p} is on the line ℓ if and only if $\vec{n} \cdot (\vec{p} \vec{p}_0) = 0$.
- We call this the *normal equation* of ℓ .
- Note: if we write

$$\vec{n} = \begin{bmatrix} a \\ b \end{bmatrix}, \vec{p} = \begin{bmatrix} x \\ y \end{bmatrix},$$

and let $c = -\vec{n} \cdot \vec{p}_0$, then we may write the normal equation of ℓ as

$$ax + by + c = 0$$
.

Example (cont'd)

That is.

$$-3(x-1)+(y-2)=0.$$

That is.

$$-3x + y = -1$$
.