Linear transformations

Mathematics 160: Lecture 23

Linear Transformations

Dan Sloughter

Furman University

October 28, 2011

• We often call a function $T: \mathbb{R}^2 \to \mathbb{R}^2$ a transformation.

• We say a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is *linear* if, for all vectors \vec{v} and \vec{w} in \mathbb{R}^2 and all scalars α .

•
$$T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$$
, and

•
$$T(\alpha \vec{\mathbf{v}}) = \alpha T(\vec{\mathbf{v}}).$$

Example

• Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ -y \end{bmatrix}.$$

- Note: T reflects a vector about the x-axis.
- If $\vec{v} = \begin{bmatrix} x_1 & y_1 \end{bmatrix}^T$ and $\vec{w} = \begin{bmatrix} x_2 & y_2 \end{bmatrix}^T$, then

$$T(\vec{v} + \vec{w}) = T\left(\begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ -y_1 - y_2 \end{bmatrix}$$
$$= \begin{bmatrix} x_1 \\ -y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ -y_2 \end{bmatrix} = T(\vec{v}) + T(\vec{w}).$$

Example (cont'd)

• If $\vec{v} = \begin{bmatrix} x & y \end{bmatrix}^T$ and α is a scalar, then

$$T(\alpha \vec{v}) = T\left(\begin{bmatrix} \alpha x \\ \alpha y \end{bmatrix}\right) = \begin{bmatrix} \alpha x \\ -\alpha y \end{bmatrix} = \alpha \begin{bmatrix} x \\ -y \end{bmatrix} = \alpha T(\vec{v}).$$

- Hence T is a linear transformation.
- Note: if we let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

then $T(\vec{v}) = A\vec{v}$.

Matrix multiplication

- Given a 2 × 2 matrix A, define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\vec{v}) = A\vec{v}$.
- Then, for any vectors \vec{v} and \vec{w} in \mathbb{R}^2 and any scalar α .

$$T(\vec{v} + \vec{w}) = A(\vec{v} + \vec{w}) = A\vec{v} + A\vec{w} = T(\vec{v}) + T(\vec{w})$$

and

$$T(\alpha \vec{\mathbf{v}}) = A(\alpha \vec{\mathbf{v}}) = \alpha A \vec{\mathbf{v}} = \alpha T(\vec{\mathbf{v}}).$$

- Hence T is a linear transformation.
- Note:
 - Let

$$\vec{\imath} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\vec{\jmath} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

be the *coordinate vectors* for \mathbb{R}^2 .

Then

$$T(\vec{i}) = A\vec{i} = \text{ first column of } A$$

 $T(\vec{j}) = A\vec{j} = \text{ second column of } A$

October 28, 2011

Example

- Let $R_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation which rotates a vector in \mathbb{R}^2 through an angle θ .
- Note:

$$R_{ heta}(\vec{\imath}) = egin{bmatrix} \cos(heta) \ \sin(heta) \end{bmatrix}$$
 and $R_{ heta}(\vec{\jmath}) = egin{bmatrix} -\sin(heta) \ \cos(heta) \end{bmatrix}$.

• It follows that, if R_{θ} is linear, then $R_{\theta}(\vec{v}) = A\vec{v}$ where

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

The matrix of a linear transformation

- Now suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation.
- Let A be the matrix with columns $T(\vec{\imath})$ and $T(\vec{\imath})$.
- Note: if $\vec{v} = \begin{bmatrix} x & y \end{bmatrix}^T$ is any vector in \mathbb{R}^2 , then

$$\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x\vec{i} + y\vec{j}.$$

• It follows that

$$T(\vec{v}) = T(x\vec{\imath} + y\vec{\jmath}) = xT(\vec{\imath}) + yT(\vec{\jmath}) = A\vec{v}.$$

- Hence we have shown that
 - A transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear if and only if there exists a 2×2 matrix A such that $T(\vec{v}) = A\vec{v}$ for all \vec{v} in \mathbb{R}^2 .
 - Moreover, the columns of A are $T(\vec{\imath})$ and $T(\vec{\jmath})$.

October 28, 2011

Example (cont'd)

• Now for any $\vec{v} = \begin{bmatrix} x & y \end{bmatrix}^T$, we have

$$A\vec{v} = \begin{bmatrix} x\cos(\theta) - y\sin(\theta) \\ x\sin(\theta) + y\cos(\theta) \end{bmatrix}.$$

- It is easy to see than that $A\vec{v} \cdot A\vec{v} = x^2 + y^2$ and $A\vec{v}\cdot\vec{v}=(x^2+v^2)\cos(\theta)$
- Hence $||A\vec{v}|| = ||\vec{v}||$ and the cosine of the angle between \vec{v} and $A\vec{v}$ is

$$\frac{A\vec{v}\cdot\vec{v}}{\|A\vec{v}\|\|\vec{v}\|}=\cos(\theta).$$

• That is, $R_{\theta}(\vec{v}) = A\vec{v}$.

Compositions

• Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ are both linear transformations, with associated matrices A and B, respectively. Then, for any \vec{v} in \mathbb{R}^2 .

$$(T \circ S)(\vec{v}) = T(S(\vec{v})) = T(B\vec{v}) = A(B\vec{v}) = AB\vec{v}.$$

• That is, the matrix corresponding to the linear transformation $T \circ S : \mathbb{R}^2 \to \mathbb{R}^2$ is AB.

Inverses

• We say a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is invertible if there exists a linear transformation $S: \mathbb{R}^2 \to \mathbb{R}^2$ such that, for any \vec{v} in \mathbb{R}^2 ,

$$(S \circ T)(\vec{v}) = \vec{v}$$
 and $(T \circ S)(\vec{v}) = \vec{v}$.

- We let T^{-1} denote the inverse of T.
- Note: if A is the matrix for T and B is the matrix for T^{-1} , then we must have BA = I and AB = I.
- That is, if A is the matrix of T, then A^{-1} is the matrix of T^{-1} .
- In particular, T is invertible if and only if its matrix A is invertible.

Example

• Suppose T reflects a vector about the x-axis and S rotates a vector through an angle π .

Then

$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } S\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

So

$$(T \circ S) \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

• Hence $T \circ S$ is a reflection about the y-axis.

Example

- Let R_{θ} be the linear transformation which rotates a vector through an angle θ .
- Clearly, we should have $R_{\theta}^{-1} = R_{-\theta}$.
- Hence if

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix},$$

we should have

Dan Sloughter (Furman University)

$$A^{-1} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix},$$

which may be verified easily.