Mathematics 160: Lecture 25

Subspaces

Dan Sloughter

Furman University

November 4, 2011

Lines through the origin

• Recall: if ℓ is a line through the origin in \mathbb{R}^n in the direction of \vec{d} , then

$$\ell = \{t\vec{d} : -\infty < t < \infty\}.$$

• Note: if \vec{v} and \vec{w} are on ℓ , then $\vec{v} = s\vec{d}$ and $\vec{w} = t\vec{d}$ for some scalars s and t, and so $\vec{v} + \vec{w}$ is on ℓ since

$$\vec{v} + \vec{w} = s\vec{d} + t\vec{d} = (s+t)\vec{d}.$$

• Similarly, for any scalar a, $a\vec{v}$ is on ℓ since

$$a\vec{v}=(as)\vec{d}$$
.

Planes through the origin

• Recall: if \mathcal{P} is a plane through the origin in \mathbb{R}^n , then, for some vectors \vec{v} and \vec{w} .

$$\mathcal{P} = \{ s\vec{v} + t\vec{w} : -\infty < s < \infty, -\infty < t < \infty \}.$$

• If \vec{x} and \vec{y} are both on \mathcal{P} , then, for some scalars s_1 , t_1 , s_2 , and t_2 ,

$$\vec{x} = s_1 \vec{v} + t_1 \vec{w}$$
 and $\vec{y} = s_2 \vec{v} + t_2 \vec{w}$.

• Hence $\vec{x} + \vec{y}$ is on \mathcal{P} since

$$\vec{x} + \vec{y} = (s_1 + s_2)\vec{v} + (t_1 + t_2)\vec{w}.$$

• Similarly, for any scalar a, $a\vec{x}$ is on \mathcal{P} since

$$a\vec{x} = (as_1)\vec{v} + (at_1)\vec{w}.$$

Definition

- We say a subset U of \mathbb{R}^n is a *subspace* of \mathbb{R}^n if
 - the zero vector $\vec{0}$ is in U,
 - whenever \vec{v} and \vec{w} are in U, $\vec{v} + \vec{w}$ is also in U, and
 - whenever \vec{v} is in U and a is a scalar, $a\vec{v}$ is also in U.
- Note: $U = \{\vec{0}\}$ and $U = \mathbb{R}^n$ are both subspaces of \mathbb{R}^n . We call any other subspace of \mathbb{R}^n a proper subspace.

Examples

- We have already shown that every line through the origin and every plane through the origin is a subspace.
- A line or plane which does not pass through the origin is not a subspace.
- The set

$$U = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0 \right\}$$

is not a subspace of \mathbb{R}^2 .

Dan Sloughter (Furman University

Mathematics 160: Lecture 25

November 4, 2011

r 4, 2011 5 /

Null spaces

• If A is an $m \times n$ matrix, we call

$$\operatorname{null} A = \{ \vec{x} : \vec{x} \in \mathbb{R}^n, A\vec{x} = \vec{0} \}.$$

the null space of A

- That is, null A is the set of all solutions of the homogeneous linear system $A\vec{x} = \vec{0}$.
- If \vec{x} and \vec{y} are in null A, and a is a scalar, then

$$A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = \vec{0}$$

and

$$A(a\vec{x}) = aA\vec{x} = a\vec{0} = \vec{0}.$$

- Also, $A\vec{0} = \vec{0}$, so $\vec{0}$ is in null A.
- Thus null A is a subspace of \mathbb{R}^n .

Dan Sloughter (Furman University

Mathematics 160: Lecture 2

November 4 2011

1, 2011 6 / 1

Image spaces

• If A is an $m \times n$ matrix, we call

im
$$A = \{\vec{y} : \vec{y} \in \mathbb{R}^m, \vec{y} = A\vec{x} \text{ for some } \vec{x} \in \mathbb{R}^n\}.$$

the *image space* of A.

• That is, im A is the set of all vectors \vec{y} in \mathbb{R}^m for which the linear system $A\vec{x} = \vec{y}$ has a solution.

Image spaces (cont'd)

- $\vec{0}$ is in im A since $A\vec{0} = \vec{0}$.
- If \vec{y}_1 and \vec{y}_2 are in im A, then there exist \vec{x}_1 and \vec{x}_2 in \mathbb{R}^n such that $A\vec{x}_1 = y_1$ and $A\vec{x}_2 = y_2$. Hence

$$A(\vec{x}_1 + \vec{x}_2) = A\vec{x}_1 + A\vec{x}_2 = \vec{y}_1 + \vec{y}_2,$$

so $\vec{y}_1 + \vec{y}_2$ is in im A.

- Moreover, if a is a scalar, then $A(a\vec{x_1}) = aA\vec{x_1} = a\vec{y_1}$, and so $a\vec{y_1}$ is in im A.
- Thus im A is a subspace of \mathbb{R}^m .

Eigenspaces

- Suppose A is an $n \times n$ matrix.
- For a scalar λ , let

$$E_{\lambda}(A) = \{\vec{x} : A\vec{x} = \lambda \vec{x}\}.$$

- Since $E_{\lambda}(A) = \text{null}(\lambda I A)$, $E_{\lambda}(A)$ is a subspace of \mathbb{R}^n , which we call the eigenspace of A corresponding to λ .
- Note: $E_{\lambda}(A) = \{\vec{0}\}$ unless λ is an eigenvalue of A.

Definition

November 4, 2011

$$\mathsf{span}\{\vec{x}_1,\vec{x}_2,\ldots,\vec{x}_k\} = \{t_1\vec{x}_1 + t_2\vec{x}_2 + \cdots + t_k\vec{x}_k : t_1,t_2,\ldots,t_k \in \mathbb{R}\}$$

the span of $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$.

• That is, the span of a set of vectors is the set of all linear combinations of the vectors.

• Given k vectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ in \mathbb{R}^n , we call the set

Examples

- If \vec{x}_1 is a nonzero vector in \mathbb{R}^n , then span $\{\vec{x}_1\}$ is the line through the origin in the direction of \vec{x}_1
- If \vec{x}_1 and \vec{x}_2 are two vectors in \mathbb{R}^n , then span $\{\vec{x}_1, \vec{x}_2\}$ is a plane through the origin if \vec{x}_1 and \vec{x}_2 are not parallel and a line through the origin, otherwise.
- If $\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n$ are the coordinate vectors in \mathbb{R}^n , then

$$\mathsf{span}\{\vec{e}_1,\vec{e}_2,\ldots,\vec{e}_n\} = \mathbb{R}^n.$$

Example

Let

$$\vec{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{x}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

- Let $U = \text{span}\{\vec{x}_1, \vec{x}_2\}$.
- Then, for example, $\vec{v} = \begin{bmatrix} -2 & 4 \end{bmatrix}^T$ is in U if and only if $\vec{v} = s\vec{x}_1 + t\vec{x}_2$ for some scalars s and t.
- That is, \vec{v} is in U if and only if we can solve

$$s + 3t = -2$$

$$s + t = 4$$
.

• Solving, we find s = 7 and t = -3, so \vec{v} is in span $\{\vec{x}_1, \vec{x}_2\}$.

Example (cont'd)

• Note: $\vec{w} = \begin{bmatrix} a & b \end{bmatrix}^T$ is in span $\{\vec{x}_1, \vec{x}_2\}$ as long as we can solve

$$A \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$
, where $A = \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix}$.

- Since A is invertible, the equation has a solution for any choice of \vec{w} .
- Hence span $\{\vec{x}_1, \vec{x}_2\} = \mathbb{R}^2$.

Dan Sloughter (Furman University)

Theorem

• Given k vectors $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ in \mathbb{R}^n ,

is a subspace of \mathbb{R}^n .

• If $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ are in a subspace U of \mathbb{R}^n , then

 $U = \operatorname{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_{\nu}\}$

Theorem (cont'd)

- Reason:
 - $\vec{0}$ is in *U* since $\vec{0} = 0\vec{x_1} + 0\vec{x_2} + \cdots + 0\vec{x_k}$.
 - Suppose \vec{v} and \vec{w} are in U and a is a scalar. Then

$$\vec{\mathbf{v}} = t_1 \vec{\mathbf{x}}_1 + t_2 \vec{\mathbf{x}}_2 + \dots + t_k \vec{\mathbf{x}}_k$$

for some scalars t_1, t_2, \ldots, t_k , and

$$\vec{w} = s_1 \vec{x}_1 + s_2 \vec{x}_2 + \cdots + s_k \vec{x}_k$$

for some scalars s_1, s_2, \ldots, s_k .

Then

$$\vec{v} + \vec{w} = (t_1 + s_1)\vec{x}_1 + (t_2 + s_2)\vec{x}_2 + \cdots + (t_k + s_k)\vec{x}_k$$

and

$$a\vec{v} = at_1\vec{x}_1 + at_2\vec{x}_2 + \cdots + at_k\vec{x}_k,$$

so $\vec{v} + \vec{w}$ and $a\vec{v}$ are in U.

• Hence U is a subspace of \mathbb{R}^n .

Theorem

 $span\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\} \subseteq U.$

Null spaces and image spaces

- Null spaces:
 - Suppose A is an $m \times n$ matrix and $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$ are basic solutions to the homogeneous equation AX = O.
 - Then

$$\mathsf{null}\, A = \mathsf{span}\{\vec{x}_1, \vec{x}_2, \dots \vec{x}_k\}.$$

- Image spaces:
 - Suppose A is an $m \times n$ matrix and $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$ are the columns of A.
 - Then

$$\operatorname{im} A = \operatorname{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}.$$