Mathematics 160: Lecture 26

Linear Independence

Dan Sloughter

Furman University

November 8, 2011

Example

Let

$$\vec{x}_1 = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 1 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} -3 \\ 2 \\ -1 \\ 4 \end{bmatrix}, \text{ and } \vec{x}_3 = \begin{bmatrix} -5 \\ 8 \\ 3 \\ 14 \end{bmatrix}.$$

- Note: $\vec{x}_3 = 2\vec{x}_1 + 3\vec{x}_2$.
- Hence span $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\} = \text{span}\{\vec{x}_1, \vec{x}_2\}.$
- Note: \vec{x}_2 is not a scalar multiple of \vec{x}_1 .
- We say \vec{x}_1 and \vec{x}_2 are linearly independent, whereas \vec{x}_1 , \vec{x}_2 , and \vec{x}_3 are linearly dependent.

Example

Let

$$ec{x_1} = egin{bmatrix} 2 \\ 1 \\ 3 \\ 1 \end{bmatrix} \ ext{and} \ ec{x_2} = egin{bmatrix} -3 \\ 2 \\ -1 \\ 4 \end{bmatrix},$$

as in the previous example.

- Let \mathcal{P} be the plane with vector equation $\vec{p} = s\vec{x}_1 + t\vec{x}_2$.
- Suppose \vec{q} is a point in \mathcal{P} . Then $\vec{q} = s_1 \vec{x}_1 + t_1 \vec{x}_2$ for some scalars s_1
- Suppose we could also write $\vec{q} = s_2\vec{x}_1 + t_2\vec{x}_2$, where s_2 and t_2 are again scalars.
- We would then have

$$s_1\vec{x}_1+t_1\vec{x}_2=s_2\vec{x_1}+t_2\vec{x}_2,$$

implying that

$$(s_1-s_2)\vec{x}_1+(t_1-t_2)\vec{x}_2=\vec{0}.$$

Example (cont'd)

- Unless both $s_1 s_2 = 0$ and $t_1 t_2 = 0$, this would imply that \vec{x}_1 and \vec{x}_2 are parallel.
- Since \vec{x}_1 and \vec{x}_2 are not parallel, we must have $s_1 = s_2$ and $t_1 = t_2$.
- That is, every point \vec{p} in the plane \mathcal{P} may be written in one and only one way as a linear combination of \vec{x}_1 and \vec{x}_2 .

Definition

• We say a set of vectors $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ in \mathbb{R}^n is linearly independent if

$$t_1\vec{x}_1 + t_2\vec{x}_2 + \cdots + t_k\vec{x}_k = \vec{0},$$

for some scalars t_1, t_2, \ldots, t_k , implies

$$t_1=t_2=\cdots=t_k=0.$$

Otherwise, we say $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is linearly dependent.

Example

Consider the vectors

$$\vec{x}_1 = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 2 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} -2 \\ 0 \\ 1 \\ -1 \end{bmatrix}, \text{ and } \vec{x}_3 \begin{bmatrix} 4 \\ -2 \\ -1 \\ 0 \end{bmatrix}$$

in \mathbb{R}^4 .

• To test $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ for linear independence, we look for scalars r, s, and t for which

$$r\vec{x}_1 + s\vec{x}_2 + t\vec{x}_3 = \vec{0}.$$

Example (cont'd)

• That is, we are asking if the system

$$r-2s+4t = 0$$
$$3r-2t = 0$$
$$r+s-t = 0$$
$$2r-s = 0$$

has only the trivial solution.

We have

$$\begin{bmatrix} 1 & -2 & 4 & 0 \\ 3 & 0 & -2 & 0 \\ 1 & 1 & -1 & 0 \\ 2 & -1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -2 & 4 & 0 \\ 0 & 1 & -\frac{7}{3} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

• Hence the only solution is the trivial solution r = s = t = 0, and so $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ is an independent set of vectors in \mathbb{R}^4 .

Theorem

• If $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is a linearly independent set of vectors in \mathbb{R}^n , then for every \vec{y} in span $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ there exist unique scalars t_1, t_2, \dots, t_k \dots , t_k such that

$$\vec{y} = t_1 \vec{x}_1 + t_2 \vec{x}_2 + \cdots + t_k \vec{x}_k.$$

Theorem (cont'd)

- Reason:
 - Suppose we have both

$$\vec{y} = t_1 \vec{x}_1 + t_2 \vec{x}_2 + \dots + t_k \vec{x}_k$$

and

$$\vec{v} = s_1 \vec{x}_1 + s_2 \vec{x}_2 + \cdots + s_k \vec{x}_k.$$

Subtracting, we have

$$(t_1-s_1)\vec{x}_1+(t_2-s_2)\vec{x}_2+\cdots+(t_k-s_k)\vec{x}_k=\vec{0}.$$

• It follows from the linear independence of $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ that

$$t_1 - s_1 = 0, t_2 - s_2 = 0, \dots, t_k - s_k = 0.$$

Theorem

November 8, 2011

12 / 14

linearly independent set of vectors.

• Suppose $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is a linearly independent set of vectors in \mathbb{R}^n .

If *U* is an $n \times n$ invertible matrix, then $\{U\vec{x}_1, U\vec{x}_2, \dots, U\vec{x}_k\}$ is also a

Theorem (cont'd)

- Reason:
 - Suppose that, for some scalars t_1, t_2, \ldots, t_k ,

$$t_1U\vec{x}_1+t_2U\vec{x}_2+\cdots+t_kU\vec{x}_k=\vec{0}.$$

Then

$$\vec{0} = U(t_1\vec{x}_1 + t_2\vec{x}_2 + \cdots + t_k\vec{x}_k),$$

and so, since U is invertible,

$$\vec{0} = t_1 \vec{x}_1 + t_2 \vec{x}_2 + \cdots + t_k \vec{x}_k.$$

• Since $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is linearly independent, it follows that

$$t_1=t_2=\cdots=t_k=0.$$

• Hence $\{U\vec{x}_1, U\vec{x}_2, \dots, U\vec{x}_k\}$ is linearly independent.

Theorem

• Suppose R is an $m \times n$ matrix in row-echelon form and let $\vec{y}_1, \vec{y}_2, \ldots$ \vec{y}_k be the nonzero rows of R. Then $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_k\}$ is a linearly independent set of vectors in \mathbb{R}^n .

Theorem (cont'd

- Reason:
 - Suppose, for some scalars t_1, t_2, \ldots, t_k ,

$$t_1\vec{y}_1 + t_2\vec{y}_2 + \cdots + t_k\vec{y}_k = \vec{0}.$$

- Suppose the first leading 1 in R is in column j. Then the jth entry of \vec{y}_1 is 1 and the jth entry of \vec{y}_i , i = 2, 3, ..., k, is 0.
- Hence we must have $t_1 = 0$.
- We then have

$$t_2\vec{y}_2+\cdots+t_k\vec{y}_k=\vec{0}.$$

- Proceeding as above, we show, successively, that $t_2=0$, $t_3=0$, and so on, up to $t_k=0$.
- Hence $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_k\}$ is linearly independent.

Theorem

- Suppose A is an $n \times n$ matrix. The following are equivalent:
 - A is invertible.
 - The columns of A are linearly independent in \mathbb{R}^n .
 - The columns of A span \mathbb{R}^n .
 - The rows of A are linearly independent in \mathbb{R}^n .
 - The rows of A span \mathbb{R}^n .