Theorem

Mathematics 160: Lecture 27 Bases

Dan Sloughter

Furman University

November 9, 2011

• Let $U = \operatorname{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ be a subspace of \mathbb{R}^n and suppose $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_k\}$ is a linearly independent set of vectors in U. Then $k \leq m$.

Theorem (cont'd)

- Reason:
 - Since, for j = 1, 2, ..., k, \vec{y}_j is in U, there exist scalars a_{ij} , $i = 1, 2, \ldots, m$, such that

$$\vec{y}_i = a_{1i}\vec{x}_1 + a_{2i}\vec{x}_2 + \cdots + a_{mi}\vec{x}_m.$$

- Let $A = [a_{ij}]$, an $m \times k$ matrix.
- Suppose k > m. Then the system $A\vec{t} = \vec{0}$ has a nontrivial solution

$$ec{t} = egin{bmatrix} t_1 \ t_2 \ dots \ t_k \end{bmatrix}.$$

Theorem (cont'd)

- Reason (cont'd):
 - Let B be the $n \times k$ matrix with columns $\vec{y_i}$, j = 1, 2, ..., k, and let C be the $n \times m$ matrix with columns $\vec{x_i}$, i = 1, 2, ..., m.
 - Then B = CA, and so

$$t_1\vec{y}_1 + t_2\vec{y}_2 + \dots + t_k\vec{y}_k = B\vec{t} = CA\vec{t} = X\vec{0} = \vec{0},$$

contradicting the assumption that $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_k\}$ is linearly independent.

• Hence we must have k < m.

Some consequences

- If $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is a linearly independent set of vectors in \mathbb{R}^n , then
- If span $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\} = \mathbb{R}^n$, then $k \ge n$.

Definition

- Suppose U is a subspace of \mathbb{R}^n . We call a set $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ a basis of U if
 - $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is linearly independent, and
 - $U = \text{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}.$

Theorem

- If both $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ and $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_m\}$ are bases of a subspace U of \mathbb{R}^n , then k=m.
- Reason:
 - Since $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is linearly independent and is in span $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_m\}$, we have $k \leq m$.
 - Since $\{\vec{y}_1, \vec{y}_2, \dots, \vec{y}_m\}$ is linearly independent and is in $\operatorname{span}\{\vec{x_1},\vec{x_2},\ldots,\vec{x_k}\}$, we have $m \leq k$.
 - Hence k = m.