Definition

Example

Mathematics 160: Lecture 28

Dimension

Dan Sloughter

Furman University

November 14, 2011

• We call the set of coordinate vectors $\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$ the standard basis of \mathbb{R}^n .

• If U is a subspace of \mathbb{R}^n , we say U has dimension k if there exists a

basis for U with k vectors. We write dim U = k.

• In particular, dim $\mathbb{R}^n = n$.

Theorem

- Suppose $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is a linearly independent set of vectors and let $U = \text{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$. If \vec{y} is not in U, then $\{\vec{y}, \vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is linearly independent.
- Reason:
 - Suppose, for some scalars s, t_1 , t_2 , ..., t_k ,

$$s\vec{y} + t_1\vec{x}_1 + t_2\vec{x}_2 + \cdots + t_k\vec{x}_k = \vec{0}.$$

- Then s=0, since otherwise \vec{y} is a linear combination of $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_k$, contrary to the assumption that \vec{v} is not in U.
- But then

$$t_1\vec{x}_1 + t_2\vec{x}_2 + \cdots + t_k\vec{x}_k = \vec{0},$$

implying that $t_1 = t_2 = \cdots = t_k = 0$.

• Thus $\{\vec{y}, \vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is linearly independent.

Consequences

- Suppose U is a proper subspace of \mathbb{R}^n . Then:
 - Any linearly independent subset of U can be enlarged to a basis of U.
 - U has a basis.
- Note: if $U = \text{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$, then some subset of $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ is a basis for U.

Theorem

- Let U and V be subspaces of \mathbb{R}^n . Then
 - If $U \subseteq V$, then dim $U < \dim V$.
 - If $U \subseteq V$ and dim $U = \dim V$, then U = V.
 - If dim U = d, then any set of d linearly independent vectors in U is a basis of *U*.
 - If dim U = d, then any spanning set of U which contains d vectors is a basis of *U*.

Example

Since

$$\det\begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & 1 \\ -1 & 2 & -1 \end{bmatrix} = -1,$$

the vectors

$$\vec{x}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \vec{x}_2 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \text{ and } \vec{x}_3 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

form a basis for \mathbb{R}^3 .

Example

Let

$$\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$.

- Let $U = \operatorname{span}\{\vec{v}, \vec{w}\}.$
- So dim U = 2.
- If

$$\vec{x} = \vec{v} - \vec{w} = \begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}$$
 and $\vec{y} = 2\vec{v} + 3\vec{w} = \begin{bmatrix} 8 \\ -4 \\ 11 \end{bmatrix}$,

then \vec{x} and \vec{y} lie in U

• Since $\{\vec{x}, \vec{y}\}$ is linearly independent, it follows that $\{\vec{x}, \vec{y}\}$ is a basis for U.

Theorem

• If U is a subspace of \mathbb{R}^n , then

$$U = \mathsf{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$$

for some set $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}$ of linearly independent vectors.

• In particular, every one-dimension subspace of \mathbb{R}^n is a line through the origin and every two-dimensional subspace of \mathbb{R}^n is a plane through the origin.

Example

• Let $U = \operatorname{im} A$ and $V = \operatorname{null} A$, where

$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 4 & 0 \\ 3 & 2 & -1 & 2 \end{bmatrix}$$

• Row reducing the augmented matrix for solving the linear system $A\vec{x} = \vec{0}$, we have

$$\begin{bmatrix} 1 & 1 & 2 & 3 & 0 \\ 2 & 1 & 4 & 0 & 0 \\ 3 & 2 & -1 & 2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 & 3 & 0 \\ 0 & 1 & 0 & 6 & 0 \\ 0 & 0 & 1 & \frac{1}{7} & 0 \end{bmatrix}.$$

• It follows that solutions of $A\vec{x} = \vec{0}$ are of the form

$$\vec{x} = t \begin{bmatrix} \frac{23}{7} \\ -6 \\ -\frac{1}{7} \\ 1 \end{bmatrix}.$$

Example (cont'd)

Hence

$$\left\{ \begin{bmatrix} 23 \\ -42 \\ -1 \\ 7 \end{bmatrix} \right\}$$

is a basis for V.

• In particular, dim V = 1.

Example (cont')

- Note: U is a subspace of \mathbb{R}^3 , and so dim $U \leq 3$.
- Now

$$\det \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 4 \\ 3 & 2 & -1 \end{bmatrix} = 7.$$

Hence

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4\\-1 \end{bmatrix} \right\}$$

is a basis for U.

- Hence dim U = 3.
- Note: in fact, $U = \mathbb{R}^3$.