Consequences of the rank theorem

Mathematics 160: Lecture 30 Full Rank

Dan Sloughter

Furman University

November 28, 2011

- If A is an $m \times n$ matrix, then rank $A \leq m$ and rank $A \leq n$.
- An $n \times n$ matrix A is invertible if and only if rank A = n.
- For any matrix A, rank $A^T = \operatorname{rank} A$.

Theorem

- If A is an $m \times n$ matrix, U is an invertible $m \times m$ matrix, and V is an invertible $n \times n$ matrix, then rank A = rank UAV.
- Reason:
 - If B = UA, then rank A = rank B since U is the product of elementary
 - Similarly, rank $A^T = \operatorname{rank} V^T B^T = \operatorname{rank} (BV)^T = \operatorname{rank} (UAV)^T$.
 - Hence rank A = rank UAV.
 - Note: in particular, if A and B are similar, then rank $A = \operatorname{rank} B$.

Theorem

- Let A be an $m \times n$ matrix with columns $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_n$. The following are equivalent:
 - 1 the only solution of $A\vec{x} = \vec{0}$ is the trivial solution $\vec{x} = \vec{0}$.
 - $\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ is linear independent.
 - \bigcirc rank A = n.
 - 4 the $n \times n$ matrix $A^T A$ is invertible.

Theorem (cont'd)

- Reason:
 - (1) \Rightarrow (2): If $t_1\vec{c}_1 + t_2\vec{c}_2 + \cdots + t_n\vec{c}_n = \vec{0}$, then $A\vec{t} = \vec{0}$ where $\vec{t} = \begin{bmatrix} t_1 & t_2 & \cdots & t_n \end{bmatrix}^T$. Hence $\vec{t} = \vec{0}$, and $\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ is linearly independent.
 - (2) \Rightarrow (3): rank $A = \dim(\operatorname{col} A) = n$.

Theorem (cont'd)

- Reason (cont'd):
 - (3) \Rightarrow (4): Suppose $A^T A \vec{x} = \vec{0}$ and let

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = A\vec{x}$.

Then

$$0 = \vec{x}^{T} (A^{T} A \vec{x}) = (A \vec{x})^{T} (A \vec{x}) = \vec{y}^{T} \vec{y} = \vec{y} \cdot \vec{y} = ||\vec{y}||^{2}.$$

- Hence $\vec{y} = \vec{0}$, and so $\vec{x} = \vec{0}$ since $\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ is linearly independent.
- Thus $A^T A$ is invertible.
- (4) \Rightarrow (1): If $A\vec{x} = \vec{0}$, then

$$(A^{T}A)\vec{x} = A^{T}(A\vec{x}) = A^{T}\vec{0} = \vec{0},$$

and so $\vec{x} = \vec{0}$ since $A^T A$ is invertible.

Theorem

- Let A be an $m \times n$ matrix with columns $\vec{c}_1, \vec{c}_2, \ldots, \vec{c}_n$. The following are equivalent:
 - **1** $A\vec{x} = \vec{b}$ has a solution for every \vec{b} in \mathbb{R}^m .

 - 4 the $m \times m$ matrix AA^T is invertible.

Theorem (cont'd)

- Reason:
 - (1) \Rightarrow (2): We have $\mathbb{R}^m = \operatorname{im} A = \operatorname{col} A$.
 - (2) \Rightarrow (3): rank $A = \dim(\operatorname{col} A) = m$.
 - (3) \Rightarrow (4): Since rank $A^{T} = m$, by the previous theorem $(A^T)^T A^T = AA^T$ is invertible.
 - (4) \Rightarrow (1): Given \vec{b} in \mathbb{R}^m , there is a \vec{y} in \mathbb{R}^m such that $(AA^T)\vec{y} = \vec{b}$. Hence $A\vec{x} = \vec{b}$, where $\vec{x} = A^T \vec{y}$.

Theorem

• For any $m \times n$ matrix A,

$$\dim(\operatorname{im} A) + \dim(\operatorname{null} A) = n.$$

- Reason:
 - Recall: if $r = \operatorname{rank} A$, then the system $A\vec{x} = \vec{0}$ has n r basic solutions.
 - That is, $\dim(\operatorname{null} A) = n r = n \dim(\operatorname{im} A)$.

Example

• In a previous example, we saw that if

$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 2 & 1 & 4 & 0 \\ 3 & 2 & -1 & 2 \end{bmatrix},$$

then

$$\left\{ \begin{bmatrix} 23 \\ -42 \\ -1 \\ 7 \end{bmatrix} \right\}$$

is a basis for null A and

$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4\\-1 \end{bmatrix} \right\}$$

is a basis for im A.

Dan Sloughter (Furman University)

Example (cont'd)

• In particular, $\dim(\operatorname{null} A) = 1$, $\dim(\operatorname{im} A) = 3$, and $\dim(\operatorname{im} A) + \dim(\operatorname{null} A) = 4.$

Example

- If A is $1 \times n$, and is nonzero, then dim(im A) = 1, so $\dim(\operatorname{null} A) = n - 1.$
 - Note: if n = 2, $A\vec{x} = 0$ is the equation of a line through the origin.
 - Note: if n = 3, $A\vec{x} = 0$ is the normal equation of a plane through the origin.